Ecosystem-atmosphere interactions in the Arctic: Using data-model approaches to understand carbon cycle feedbacks

Research output: Book/anthology/dissertation/reportPh.D. thesisResearch


The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its different components. To improve our understanding of the atmosphere-ecosystem interactions, the Greenland Ecosystem Monitoring (GEM) program measures ecosystem CO2 exchange and links it to biogeochemical processes. However, this task remains challenging in northern latitudes due to an insufficient number of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale.

In Paper I we found a compensatory response of photosynthesis (GPP) and ecosystem respiration (Reco), both highly sensitive to the meteorological drivers (i.e. temperatures and radiation) in Kobbefjord, West Greenland tundra. This tight relationship led to a relatively insensitive net ecosystem exchange (NEE) to the meteorology, despite the large variability in temperature and precipitations across growing seasons. This tundra ecosystem acted as a consistent sink of C (-30 g C m-2), except in 2011 (41 g C m-2), which was associated with a major pest outbreak. In Paper II we estimated this decrease of C sink strength of 118-144 g C m-2 in the anomalous year (2011), corresponding to 1210-1470 tonnes C at the Kobbefjord catchment scale. We concluded that the meteorological sensitivity of photosynthesis and respiration were similar, and hence compensatory, but we could not explain the causes. Therefore, in Paper III we used a calibrated and validated version of the Soil-Plant-Atmosphere model to explore full annual C cycles and detail the coupling between GPP and Reco. From this study we found two key results. First, similar metrological buffering to growing season reduced the full annual C sink strength by 60%. Second, plant traits control the compensatory effect observed (and estimated) between gross primary production and ecosystem respiration. Because a site-specific location is not representative of the entire Arctic, we further evaluated the pan-Arctic terrestrial C cycling using the CARDAMOM data assimilation system in Paper IV. Our estimates of C fluxes, pools and transit times are in good agreement with different sources of assimilated and independent data, both at pan-Arctic and local scale. Our benchmarking analysis with extensively used Global Vegetation Models (GVM) highlights that GVM modellers need to focus on the vegetation C dynamics, but also the respiratory losses, to improve our understanding of internal C cycle dynamics in the Arctic.

Data-model approaches generate novel outputs, allowing us to explore C cycling mechanisms and controls that otherwise would not have been possible to address individually. Also, discrepancies between data and models can provide information about knowledge gaps and ecological indicators not previously detected from field observations, emphasizing the unique synergy that models and data are capable of bringing together.
Original languageEnglish
PublisherAarhus University
Number of pages182
Publication statusPublished - 2018

    Research areas

  • Greenland, Arctic, carbon cycle, net ecosystem exchange, photosynthesis, respiration, meteorology, biological disturbance, plant traits, observations, modelling

See relations at Aarhus University Citationformats

Download statistics

No data available

ID: 125865192