Dynamic nuclear polarization pulse sequence engineering using single-spin vector effective Hamiltonians

A B Nielsen, J P A Carvalho, D L Goodwin, N Wili, N C Nielsen*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

Dynamic nuclear polarization (DNP) has proven to be a powerful technique to enhance nuclear spin polarization by transferring the much higher electron spin polarization to nuclear spins prior to detection. While major attention has been devoted to high-field applications with continuous microwave irradiation, the introduction of fast arbitrary waveform generators is gradually increasing opportunities for the realization of pulsed DNP. Here, we describe how static-powder DNP pulse sequences may systematically be designed using single-spin vector effective Hamiltonian theory. Particular attention is devoted to the intricate interplay between two important parts of the effective first-order Hamiltonian, namely, linear field (single-spin) terms and Fourier coefficients determining scaling of the bilinear coupling terms mediating polarization transfer. We address two cases. The first case operates in the regime, where the microwave field amplitude is lower than the nuclear Larmor frequency. Here, we illustrate the predictive strength of a single-spin vector model by comparing analytical calculations with experimental DNP results at 9.8 GHz/15 MHz on trityl radicals at 80 K. The second case operates in the high-power regime, where we combine the underlying single-spin vector design principles with numerical non-linear optimization to optimize the balance between the linear terms and the bilinear Fourier coefficients in a figure of merit function. We demonstrate, numerically and experimentally, a broadband DNP pulse sequence PLATO (PoLarizAtion Transfer via non-linear Optimization) with a bandwidth of 80 MHz and optimized for a microwave field with a maximum (peak) amplitude of 32 MHz.

Original languageEnglish
JournalPhysical chemistry chemical physics : PCCP
Volume26
Issue44
Pages (from-to)28208-28219
Number of pages12
ISSN1463-9076
DOIs
Publication statusPublished - 28 Nov 2024

Fingerprint

Dive into the research topics of 'Dynamic nuclear polarization pulse sequence engineering using single-spin vector effective Hamiltonians'. Together they form a unique fingerprint.

Cite this