Dopamine Binding and Analysis in Undiluted Human Serum and Blood by the RNA-Aptamer Electrode

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Specific analysis of such neurotransmitters as dopamine by the aptamer electrodes in biological fluids is detrimentally affected by nonspecific adsorption of media, particularly pronounced at positive charges of the electrode surface at which dopamine oxidizes. Here, we show that dopamine analysis at the RNA-aptamer/cysteamine-modified electrodes is strongly inhibited in undiluted human serum and blood due to nonspecific interfacial adsorption of serum and blood components. We demonstrate that nonspecific adsorption of serum proteins (but not of blood components) could be minimized when analysis is performed in a flow and injections of serum samples are followed by washing steps in a phosphate buffer solution (PBS) carrier. Under those conditions, the dopamine-aptamer binding affinity in whole human serum of (1.9 ± 0.3) × 10 4 M -1 s -1 was comparable to the (3.7 ± 0.3) × 10 4 M -1 s -1 found in PBS, and the dopamine oxidation signal linearly depended on the dopamine concentration, providing a sensitivity of analysis of 73 ± 3 nA μM -1 cm -2 and a LOD of 114 ± 8 nM. The flow-injection apatmer-electrode system was used for direct analysis of basal levels of dopamine in undiluted human serum samples, without using any physical separators (membranes) or filtration procedures. The results suggest a simple strategy for combatting biosurface fouling, otherwise most pronounced at positive electrode potentials used for dopamine detection, and assist in designing more efficient antifouling strategies for biomedical applications.

Original languageEnglish
JournalACS Chemical Neuroscience
Volume10
Issue3
Pages (from-to)1706-1715
Number of pages10
ISSN1948-7193
DOIs
Publication statusPublished - 2019

    Research areas

  • Blood, Chronoamperometry, Dopamine, Electrochemical Impedance, Flow-through cell, Human serum, RNA aptamer electrode, Surface fouling

See relations at Aarhus University Citationformats

ID: 149733706