Does the νmax Scaling Relation Depend on Metallicity? Insights from 3D Convection Simulations

Yixiao Zhou*, Jørgen Christensen-Dalsgaard, Martin Asplund, Yaguang Li, Regner Trampedach, Yuan Sen Ting, Jakob L. Rørsted

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

6 Citations (Scopus)

Abstract

Solar-like oscillations have been detected in thousands of stars thanks to modern space missions. These oscillations have been used to measure stellar masses and ages, which have been widely applied in Galactic archeology. One of the pillars of such applications is the νmax scaling relation: the frequency of maximum power νmax, assumed to be proportional to the acoustic cutoff frequency, νac, scales with effective temperature and surface gravity. However, the theoretical basis of the νmax scaling relation is uncertain, and there is an ongoing debate about whether it can be applied to metal-poor stars. We investigate the metallicity dependence of the ν max scaling relation by carrying out 3D near-surface convection simulations for solar-type stars with [Fe/H] between −3 and 0.5 dex. First, we found a negative correlation between νac and metallicity from the 3D models. This is in tension with the positive correlation identified by studies using 1D models. Second, we estimated theoretical ν max values using velocity amplitudes determined from first principles, by quantifying the mode excitation and damping rates with methods validated in our previous works. We found that ν max does not show correlation with metallicity at solar effective temperature and surface gravity. This study opens an exciting prospect of testing the asteroseismic scaling relations against realistic 3D hydrodynamical stellar models.

Original languageEnglish
Article number118
JournalAstrophysical Journal
Volume962
Issue2
ISSN0004-637X
DOIs
Publication statusPublished - Feb 2024

Fingerprint

Dive into the research topics of 'Does the νmax Scaling Relation Depend on Metallicity? Insights from 3D Convection Simulations'. Together they form a unique fingerprint.

Cite this