TY - JOUR
T1 - Do air-breathing fish suffer branchial oxygen loss in hypoxic water?
AU - Aaskov, Magnus Lerche
AU - Nelson, Derek
AU - Lauridsen, Henrik
AU - Huong, Do Thi Thanh
AU - Ishimatsu, Atsushi
AU - Crossley, II, Dane A.
AU - Malte, Hans
AU - Bayley, Mark
PY - 2023/9
Y1 - 2023/9
N2 - In hypoxia, air-breathing fish obtain O2 from the air but continue to excrete CO2 into the water. Consequently, it is believed that some O2 obtained by air-breathing is lost at the gills in hypoxic water. Pangasionodon hypophthalmus is an air-breathing catfish with very large gills from the Mekong River basin where it is cultured in hypoxic ponds. To understand how P. hypophthalmus can maintain high growth in hypoxia with the presumed O2 loss, we quantified respiratory gas exchange in air and water. In severe hypoxia (PO2: ≈ 1.5 mmHg), it lost a mere 4.9% of its aerial O2 uptake, while maintaining aquatic CO2 excretion at 91% of the total. Further, even small elevations in water PO2 rapidly reduced this minor loss. Charting the cardiovascular bauplan across the branchial basket showed four ventral aortas leaving the bulbus arteriosus, with the first and second gill arches draining into the dorsal aorta while the third and fourth gill arches drain into the coeliacomesenteric artery supplying the gut and the highly trabeculated respiratory swim-bladder. Substantial flow changes across these two arterial systems from normoxic to hypoxic water were not found. We conclude that the proposed branchial oxygen loss in air-breathing fish is likely only a minor inefficiency.
AB - In hypoxia, air-breathing fish obtain O2 from the air but continue to excrete CO2 into the water. Consequently, it is believed that some O2 obtained by air-breathing is lost at the gills in hypoxic water. Pangasionodon hypophthalmus is an air-breathing catfish with very large gills from the Mekong River basin where it is cultured in hypoxic ponds. To understand how P. hypophthalmus can maintain high growth in hypoxia with the presumed O2 loss, we quantified respiratory gas exchange in air and water. In severe hypoxia (PO2: ≈ 1.5 mmHg), it lost a mere 4.9% of its aerial O2 uptake, while maintaining aquatic CO2 excretion at 91% of the total. Further, even small elevations in water PO2 rapidly reduced this minor loss. Charting the cardiovascular bauplan across the branchial basket showed four ventral aortas leaving the bulbus arteriosus, with the first and second gill arches draining into the dorsal aorta while the third and fourth gill arches drain into the coeliacomesenteric artery supplying the gut and the highly trabeculated respiratory swim-bladder. Substantial flow changes across these two arterial systems from normoxic to hypoxic water were not found. We conclude that the proposed branchial oxygen loss in air-breathing fish is likely only a minor inefficiency.
KW - Pangasionodon hypophthalmus
KW - cardiovascular bauplan
KW - gill oxygen loss
KW - respirometry
UR - http://www.scopus.com/inward/record.url?scp=85171119758&partnerID=8YFLogxK
U2 - 10.1098/rspb.2023.1353
DO - 10.1098/rspb.2023.1353
M3 - Journal article
C2 - 37700647
SN - 0962-8452
VL - 290
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
IS - 2006
M1 - 20231353
ER -