TY - JOUR
T1 - Development of a biomarker panel for cell characterization intended for cultivated meat
AU - Auguet Lara, Marc
AU - Skrivergaard, Stig
AU - Therkildsen, Margrethe
AU - Rasmussen, Martin Krøyer
AU - Young, Jette F
PY - 2025/3/1
Y1 - 2025/3/1
N2 - Cultivated meat has in recent years been suggested as a sustainable alternative to produce meat at large-scale. Several aspects of cultivated meat production have demonstrated significant progress. However, there are still many questions regarding the cell culture, media composition, and the production itself to be answered and optimized. Finding good starter cell populations is a challenge to address and requires robust tools to characterize the cell populations. Detailed analysis is required to identify each type of cell within the skeletal muscle niche leads to optimized cultivated meat production at large-scale. In this study, we developed a set of biomarkers, using digital droplet PCR (ddPCR) and Immunofluorescence (IF) staining, to identify specific cell types within a heterogeneous cell population isolated from skeletal muscle tissue. We showed that combining Neural Cell Adhesion Molecule (NCAM), Calponin 1 (CNN1), and Fibronectin (FN), can be a powerful approach to predict the growth of skeletal myotubes, smooth muscle mesenchymal cells (SMMCs), and myofibroblasts, respectively. Moreover, early cell-cell interactions of fibroblastic cells were observed to be triggered through thin actin filaments containing CNN1 protein, to form, subsequently, myofibroblast networks. Besides, Myogenic Differentiation 1 (MyoD) is the key marker to detect skeletal muscle growth, whereas Myogenic Factor 5 (MyF5) can be expressed in myogenic and non-myogenic cells. MyF5 was detected at differentiation stages within the myotube nuclei, suggesting an unknown role during myotube formation.
AB - Cultivated meat has in recent years been suggested as a sustainable alternative to produce meat at large-scale. Several aspects of cultivated meat production have demonstrated significant progress. However, there are still many questions regarding the cell culture, media composition, and the production itself to be answered and optimized. Finding good starter cell populations is a challenge to address and requires robust tools to characterize the cell populations. Detailed analysis is required to identify each type of cell within the skeletal muscle niche leads to optimized cultivated meat production at large-scale. In this study, we developed a set of biomarkers, using digital droplet PCR (ddPCR) and Immunofluorescence (IF) staining, to identify specific cell types within a heterogeneous cell population isolated from skeletal muscle tissue. We showed that combining Neural Cell Adhesion Molecule (NCAM), Calponin 1 (CNN1), and Fibronectin (FN), can be a powerful approach to predict the growth of skeletal myotubes, smooth muscle mesenchymal cells (SMMCs), and myofibroblasts, respectively. Moreover, early cell-cell interactions of fibroblastic cells were observed to be triggered through thin actin filaments containing CNN1 protein, to form, subsequently, myofibroblast networks. Besides, Myogenic Differentiation 1 (MyoD) is the key marker to detect skeletal muscle growth, whereas Myogenic Factor 5 (MyF5) can be expressed in myogenic and non-myogenic cells. MyF5 was detected at differentiation stages within the myotube nuclei, suggesting an unknown role during myotube formation.
UR - http://www.scopus.com/inward/record.url?scp=85217899773&partnerID=8YFLogxK
U2 - 10.1016/j.yexcr.2025.114467
DO - 10.1016/j.yexcr.2025.114467
M3 - Journal article
C2 - 39978714
SN - 0014-4827
VL - 446
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 1
M1 - 114467
ER -