Development and performance evaluation of new AirGIS – A GIS based air pollution and human exposure modelling system

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

AirGIS, a Geographic Information Systems (GIS) based air pollution and human exposure modelling system, is routinely used in conjunction with the Operational Street Pollution Model (OSPM®), across the globe, to assess local- or street-scale air pollution. We developed a substantially revised version of AirGIS (hereafter, new AirGIS) as a new modelling system in open-source GIS i.e. PostgreSQL software with its spatial extension PostGIS to (1) optimize the model performance enabling model calculations for a large number of sites over a large geographical area, with limited computing resources (2) replace the outdated programming language Avenue (3) become independent of commercial GIS software. This paper, therefore, aims to describe the overall structure of new AirGIS modelling system together with its strengths and limitations. Furthermore, the new AirGIS has been evaluated against various measured datasets of ambient air pollution (NOx, NO2, PM10 and PM2.5). In terms of reproducing temporal variation (single location, time series of concentrations e.g. annual, daily etc.) of air pollution, the new model achieved correlations (R) in the range 0.45–0.96. While, in terms of reproducing the spatial variation (several locations, single time interval), the new AirGIS achieved correlations in the range 0.32–0.92. The new model, therefore, can be used for both short- and long-term air pollution exposure assessments to facilitate health related studies. However, the present evaluation of the new modelling system also revealed that the new AirGIS significantly overestimated the observed concentrations for two out of four datasets. The possible reasons for these errors and future directions to reducing the bias in the new model output have been discussed.

Original languageEnglish
JournalAtmospheric Environment
Volume198
Pages (from-to)102-121
Number of pages20
ISSN1352-2310
DOIs
Publication statusPublished - 1 Feb 2019

    Research areas

  • AirGIS, GIS, Human exposure modelling, Model evaluation, OSPM, PostgreSQL, Urban air pollution

See relations at Aarhus University Citationformats

ID: 135615735