Aarhus University Seal / Aarhus Universitets segl

Description and characterization of a penicillin-resistant Streptococcus dysgalactiae subsp. equisimilis clone isolated from blood in three epidemiologically linked patients

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

Description and characterization of a penicillin-resistant Streptococcus dysgalactiae subsp. equisimilis clone isolated from blood in three epidemiologically linked patients. / Fuursted, Kurt; Stegger, Marc; Hoffmann, Steen; Lambertsen, Lotte; Andersen, Paal Skytt; Deleuran, Mette; Thomsen, Marianne Kragh.

In: Journal of Antimicrobial Chemotherapy, Vol. 71, No. 12, 12.2016, p. 3376-3380.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Fuursted, Kurt ; Stegger, Marc ; Hoffmann, Steen ; Lambertsen, Lotte ; Andersen, Paal Skytt ; Deleuran, Mette ; Thomsen, Marianne Kragh. / Description and characterization of a penicillin-resistant Streptococcus dysgalactiae subsp. equisimilis clone isolated from blood in three epidemiologically linked patients. In: Journal of Antimicrobial Chemotherapy. 2016 ; Vol. 71, No. 12. pp. 3376-3380.

Bibtex

@article{b2d1d9c03fc142d3bdf0dc31dd6f3006,
title = "Description and characterization of a penicillin-resistant Streptococcus dysgalactiae subsp. equisimilis clone isolated from blood in three epidemiologically linked patients",
abstract = "BACKGROUND: During a 27 month period, we detected four incidents of penicillin-resistant (PR) Streptococcus dysgalactiae subsp. equisimilis (SDSE) isolated from blood cultures of three patients.METHODS: The 4 PR-SDSE were compared phenotypically and molecularly (using WGS) with 36 penicillin-susceptible SDSE from blood cultures obtained in the same catchment area and time period.RESULTS: Phylogenetic analysis showed that the four PR-SDSE belonged to a single clone and a possible epidemiological link between the three patients was identified to be a dermatology department. MICs of penicillin were determined to be 0.5-2 mg/L using Etest and 0.5 mg/L when tested by a broth microdilution method. The four PR-SDSE were unrelated to the 36 penicillin-susceptible isolates, which could suggest that they did not evolve locally from a susceptible clone, but have been introduced into the region. In silico genome-based resistome analysis revealed identical PBP mutations in all four isolates. We detected mutations in multiple PBPs, including two amino acid substitutions within the active sites of the transpeptidase domain of PBP2x (T341P and Q555E), which have also been detected in other PR streptococci. The remaining mutations were, however, all located outside the active-site motifs of the transpeptidase domain.CONCLUSIONS: To the best of our knowledge, this is the first description and characterization of invasive PR-SDSE. The resistant isolates had several amino acid changes in various PBPs compared with penicillin-susceptible SDSE. The observation that SDSE also can become PR emphasizes the importance of performing antimicrobial susceptibility testing.",
author = "Kurt Fuursted and Marc Stegger and Steen Hoffmann and Lotte Lambertsen and Andersen, {Paal Skytt} and Mette Deleuran and Thomsen, {Marianne Kragh}",
note = "{\textcopyright} The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.",
year = "2016",
month = dec,
doi = "10.1093/jac/dkw320",
language = "English",
volume = "71",
pages = "3376--3380",
journal = "Journal of Antimicrobial Chemotherapy",
issn = "0305-7453",
publisher = "Oxford University Press",
number = "12",

}

RIS

TY - JOUR

T1 - Description and characterization of a penicillin-resistant Streptococcus dysgalactiae subsp. equisimilis clone isolated from blood in three epidemiologically linked patients

AU - Fuursted, Kurt

AU - Stegger, Marc

AU - Hoffmann, Steen

AU - Lambertsen, Lotte

AU - Andersen, Paal Skytt

AU - Deleuran, Mette

AU - Thomsen, Marianne Kragh

N1 - © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

PY - 2016/12

Y1 - 2016/12

N2 - BACKGROUND: During a 27 month period, we detected four incidents of penicillin-resistant (PR) Streptococcus dysgalactiae subsp. equisimilis (SDSE) isolated from blood cultures of three patients.METHODS: The 4 PR-SDSE were compared phenotypically and molecularly (using WGS) with 36 penicillin-susceptible SDSE from blood cultures obtained in the same catchment area and time period.RESULTS: Phylogenetic analysis showed that the four PR-SDSE belonged to a single clone and a possible epidemiological link between the three patients was identified to be a dermatology department. MICs of penicillin were determined to be 0.5-2 mg/L using Etest and 0.5 mg/L when tested by a broth microdilution method. The four PR-SDSE were unrelated to the 36 penicillin-susceptible isolates, which could suggest that they did not evolve locally from a susceptible clone, but have been introduced into the region. In silico genome-based resistome analysis revealed identical PBP mutations in all four isolates. We detected mutations in multiple PBPs, including two amino acid substitutions within the active sites of the transpeptidase domain of PBP2x (T341P and Q555E), which have also been detected in other PR streptococci. The remaining mutations were, however, all located outside the active-site motifs of the transpeptidase domain.CONCLUSIONS: To the best of our knowledge, this is the first description and characterization of invasive PR-SDSE. The resistant isolates had several amino acid changes in various PBPs compared with penicillin-susceptible SDSE. The observation that SDSE also can become PR emphasizes the importance of performing antimicrobial susceptibility testing.

AB - BACKGROUND: During a 27 month period, we detected four incidents of penicillin-resistant (PR) Streptococcus dysgalactiae subsp. equisimilis (SDSE) isolated from blood cultures of three patients.METHODS: The 4 PR-SDSE were compared phenotypically and molecularly (using WGS) with 36 penicillin-susceptible SDSE from blood cultures obtained in the same catchment area and time period.RESULTS: Phylogenetic analysis showed that the four PR-SDSE belonged to a single clone and a possible epidemiological link between the three patients was identified to be a dermatology department. MICs of penicillin were determined to be 0.5-2 mg/L using Etest and 0.5 mg/L when tested by a broth microdilution method. The four PR-SDSE were unrelated to the 36 penicillin-susceptible isolates, which could suggest that they did not evolve locally from a susceptible clone, but have been introduced into the region. In silico genome-based resistome analysis revealed identical PBP mutations in all four isolates. We detected mutations in multiple PBPs, including two amino acid substitutions within the active sites of the transpeptidase domain of PBP2x (T341P and Q555E), which have also been detected in other PR streptococci. The remaining mutations were, however, all located outside the active-site motifs of the transpeptidase domain.CONCLUSIONS: To the best of our knowledge, this is the first description and characterization of invasive PR-SDSE. The resistant isolates had several amino acid changes in various PBPs compared with penicillin-susceptible SDSE. The observation that SDSE also can become PR emphasizes the importance of performing antimicrobial susceptibility testing.

U2 - 10.1093/jac/dkw320

DO - 10.1093/jac/dkw320

M3 - Journal article

C2 - 27585966

VL - 71

SP - 3376

EP - 3380

JO - Journal of Antimicrobial Chemotherapy

JF - Journal of Antimicrobial Chemotherapy

SN - 0305-7453

IS - 12

ER -