Demographic History of the Genus Pan Inferred from Whole Mitochondrial Genome Reconstructions

Irene Lobon, Serena Tucci, Marc de Manuel, Silvia Ghirotto, Andrea Benazzo, Javier Prado-Martinez, Belen Lorente-Galdos, Kiwoong Nam, Marc Dabad, Jessica Hernandez-Rodriguez, David Comas, Arcadi Navarro, Mikkel H. Schierup, Aida M Andrés, Guido Barbujani, Christina Hvilsom, Tomas Marques-Bonet*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

20 Citations (Scopus)
129 Downloads (Pure)

Abstract

The genus Pan is the closest genus to our own and it includes two species, Panpaniscus ( bonobos) and Pan troglodytes ( chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes ( mitogenomes) from whole genome shotgun ( WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago ( Mya) [ 0.81-1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [ 0.41-0.78] with further internal separations at 0.32 Mya [ 0.22-0.43] and 0.16 Mya [ 0.17-0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics.

Original languageEnglish
JournalGenome Biology and Evolution
Volume8
Issue6
Pages (from-to)2020-2030
Number of pages11
ISSN1759-6653
DOIs
Publication statusPublished - Jun 2016

Keywords

  • genome diversity
  • chimpanzee
  • bonobo
  • bioinformatics
  • next-generation sequencing
  • mtArchitect
  • POPULATION-GENETICS
  • DNA POLYMORPHISM
  • DIVERGENCE TIMES
  • GREAT APE
  • CHIMPANZEE
  • DIVERSITY
  • EVOLUTION
  • ALIGNMENT
  • PANISCUS
  • ARCHITECTURE

Fingerprint

Dive into the research topics of 'Demographic History of the Genus Pan Inferred from Whole Mitochondrial Genome Reconstructions'. Together they form a unique fingerprint.

Cite this