Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Phenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth at environmentally relevant (nM) MCPP concentrations: enantiomer fraction (EF)<0.5. On the other hand, we observed preferential degradation of the S-enantiomer in all samples and treatments at elevated (μM) MCPP concentrations: EF>0.5. Three different microbial communities were discriminated by enantioselective degradation of MCPP: 1) aerobic microorganisms with little enantioselectivity, 2) aerobic microorganisms with R-selectivity and 3) anaerobic denitrifying organisms with S-selectivity. Glucose-amendment did not enhance MCPP degradation, while nitrate amendment enhanced the degradation of high concentrations of the herbicide.

Original languageEnglish
JournalScience of the Total Environment
Volume569-570
Pages (from-to)1457-65
Number of pages9
ISSN0048-9697
DOIs
Publication statusPublished - 1 Nov 2016

See relations at Aarhus University Citationformats

Projects

ID: 102363430