TY - JOUR
T1 - Decline in Etesian winds after large volcanic eruptions in the last millennium
AU - Misios, Stergios
AU - Logothetis, Ioannis
AU - Knudsen, Mads F.
AU - Karoff, Christoffer
AU - Amiridis, Vassilis
AU - Tourpali, Kleareti
N1 - Funding Information:
Financial support. This research has been supported by the H2020
Publisher Copyright:
© Copyright:
PY - 2022/7
Y1 - 2022/7
N2 - The northerly Etesian winds are a stable summertime circulation system in the eastern Mediterranean, emerging from a steep pressure gradient between the central Europe and Balkans high-pressure and the Anatolian low-pressure systems. Etesian winds are influenced by the variability in the Indian summer monsoon (ISM), but their sensitivity to external forcing on interannual and longer timescales is not well understood. Here, for the first time, we investigate the sensitivity of Etesian winds to large volcanic eruptions in a set of model simulations over the last millennium and reanalysis of the 20th century. We provide model evidence for significant volcanic signatures, manifested as a robust reduction in the wind speed and the total number of days with Etesian winds in July and August. These are robust responses to all strong eruptions in the last millennium, and in the extreme case of Samalas, the ensemble-mean response suggests a post-eruption summer without Etesians. The significant decline in the number of days with Etesian winds is attributed to the weakening of the ISM in the post-eruption summers, which is associated with a reduced large-scale subsidence and weakened surface pressure gradients in the eastern Mediterranean. Our analysis identifies a stronger sensitivity of Etesian winds to the Northern Hemisphere volcanic forcing, particularly for volcanoes before the 20th century, while for the latest large eruption of Pinatubo modelled and observed responses are insignificant. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean in the summers after large volcanic eruptions.
AB - The northerly Etesian winds are a stable summertime circulation system in the eastern Mediterranean, emerging from a steep pressure gradient between the central Europe and Balkans high-pressure and the Anatolian low-pressure systems. Etesian winds are influenced by the variability in the Indian summer monsoon (ISM), but their sensitivity to external forcing on interannual and longer timescales is not well understood. Here, for the first time, we investigate the sensitivity of Etesian winds to large volcanic eruptions in a set of model simulations over the last millennium and reanalysis of the 20th century. We provide model evidence for significant volcanic signatures, manifested as a robust reduction in the wind speed and the total number of days with Etesian winds in July and August. These are robust responses to all strong eruptions in the last millennium, and in the extreme case of Samalas, the ensemble-mean response suggests a post-eruption summer without Etesians. The significant decline in the number of days with Etesian winds is attributed to the weakening of the ISM in the post-eruption summers, which is associated with a reduced large-scale subsidence and weakened surface pressure gradients in the eastern Mediterranean. Our analysis identifies a stronger sensitivity of Etesian winds to the Northern Hemisphere volcanic forcing, particularly for volcanoes before the 20th century, while for the latest large eruption of Pinatubo modelled and observed responses are insignificant. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean in the summers after large volcanic eruptions.
UR - http://www.scopus.com/inward/record.url?scp=85135404537&partnerID=8YFLogxK
U2 - 10.5194/wcd-3-811-2022
DO - 10.5194/wcd-3-811-2022
M3 - Journal article
AN - SCOPUS:85135404537
SN - 2698-4016
VL - 3
SP - 811
EP - 823
JO - Weather and Climate Dynamics
JF - Weather and Climate Dynamics
IS - 3
ER -