Decline in Etesian winds after large volcanic eruptions in the last millennium

Stergios Misios*, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, Kleareti Tourpali

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

The northerly Etesian winds are a stable summertime circulation system in the eastern Mediterranean, emerging from a steep pressure gradient between the central Europe and Balkans high-pressure and the Anatolian low-pressure systems. Etesian winds are influenced by the variability in the Indian summer monsoon (ISM), but their sensitivity to external forcing on interannual and longer timescales is not well understood. Here, for the first time, we investigate the sensitivity of Etesian winds to large volcanic eruptions in a set of model simulations over the last millennium and reanalysis of the 20th century. We provide model evidence for significant volcanic signatures, manifested as a robust reduction in the wind speed and the total number of days with Etesian winds in July and August. These are robust responses to all strong eruptions in the last millennium, and in the extreme case of Samalas, the ensemble-mean response suggests a post-eruption summer without Etesians. The significant decline in the number of days with Etesian winds is attributed to the weakening of the ISM in the post-eruption summers, which is associated with a reduced large-scale subsidence and weakened surface pressure gradients in the eastern Mediterranean. Our analysis identifies a stronger sensitivity of Etesian winds to the Northern Hemisphere volcanic forcing, particularly for volcanoes before the 20th century, while for the latest large eruption of Pinatubo modelled and observed responses are insignificant. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean in the summers after large volcanic eruptions.

Original languageEnglish
JournalWeather and Climate Dynamics
Volume3
Issue3
Pages (from-to)811-823
Number of pages13
DOIs
Publication statusPublished - Jul 2022

Fingerprint

Dive into the research topics of 'Decline in Etesian winds after large volcanic eruptions in the last millennium'. Together they form a unique fingerprint.

Cite this