Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Final published version
Numerous mutations in the corneal protein TGFBIp lead to opaque extracellular deposits and corneal dystrophies (CDs). Here we elucidate the molecular origins underlying TGFBIp's mutation-induced increase in aggregation propensity through comprehensive biophysical and bioinformatic analyses of mutations associated with every major subtype of TGFBIp-linked CDs including lattice corneal dystrophy (LCD) and three subtypes of granular corneal dystrophy (GCD 1-3). LCD mutations at buried positions in the C-terminal Fas1-4 domain lead to decreased stability. GCD variants show biophysical profiles distinct from those of LCD mutations. GCD 1 and 3 mutations reduce solubility rather than stability. Half of the 50 positions within Fas1-4 most sensitive to mutation are associated with at least one known disease-causing mutation, including 10 of the top 11 positions. Thus, TGFBIp aggregation is driven by mutations that despite their physico-chemical diversity target either the stability or solubility of Fas1-4 in predictable ways, suggesting straightforward general therapeutic strategies.
Original language | English |
---|---|
Journal | Journal of Molecular Biology |
Volume | 430 |
Issue | 8 |
Pages (from-to) | 1116-1140 |
ISSN | 0022-2836 |
DOIs | |
Publication status | Published - 13 Apr 2018 |
See relations at Aarhus University Citationformats
ID: 123714251