Aarhus University Seal

Consumer-driven nutrient release to the water by a small omnivorous fish enhanced ramet production but reduced the growth rate of the submerged macrophyte Vallisneria denseserrulata (Makino) Makino

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Jinlei Yu, CAS - Nanjing Institute of Geography and Limnology
  • ,
  • Manli Xia, Jinan University
  • ,
  • Yanyan Zhao, CAS - Nanjing Institute of Geography and Limnology
  • ,
  • Hu He, CAS - Nanjing Institute of Geography and Limnology
  • ,
  • Baohua Guan, CAS - Nanjing Institute of Geography and Limnology, Chinese Academy of Social Sciences
  • ,
  • Feizhou Chen, CAS - Nanjing Institute of Geography and Limnology, Chinese Academy of Social Sciences
  • ,
  • Zhengwen Liu, CAS - Nanjing Institute of Geography and Limnology, Jinan University, Chinese Academy of Social Sciences
  • ,
  • Erik Jeppesen

Small fish are highly associated with submerged macrophytes but may potentially hamper their growth due to nutrient excretion that stimulate growth of phytoplankton and periphyton growth. We conducted a mesocosm experiment to elucidate the effects of the small omnivore Chinese bitterling Acheilognathus macropterus on the growth of phytoplankton, periphyton and the submerged macrophyte Vallisneria denseserrulata. The treatments were fishless as well as low (LF) and high (HF) fish density. We found that the concentrations of nutrients and the phytoplankton biomass increased substantially in both fish treatments, leading to a significantly higher light attenuation compared with the control. Moreover, bitterling substantially enhanced the biomass of periphyton on plant leaves. Consequently, the relative growth rate (RGR) of V. denseserrulata was significantly suppressed in HF, while RGR in the LF treatment did not differ significantly from the controls. However, the bitterling also stimulated the ramet production of V. denseserrulata, significantly. Our results indicate that Chinese bitterling reduce the RGR of V. denseserrulata under high fish density condition. Therefore, the density of Chinese bitterling should be kept low in order to reduce the negative effects of the fish on the RGR of submerged macrophytes (e.g. V. denseserrulata), when restoring lakes by plant transplantation.

Original languageEnglish
JournalHydrobiologia
Volume848
Issue18
Pages (from-to)4335-4346
Number of pages12
ISSN0018-8158
DOIs
Publication statusPublished - Oct 2021

    Research areas

  • Bitterling, Consumer-driven nutrient recycling, Fish–macrophytes interaction, Lake restoration, Omnivore, Ramet production

See relations at Aarhus University Citationformats

ID: 219396093