Comprehensive analysis of soluble RNAs in human embryo culture media and blastocoel fluid

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Purpose: miRNAs have been suggested as biomarkers of embryo viability; however, findings from preliminary studies are divergent. Furthermore, the presence of other types of small RNA molecules remains to be investigated. The purpose of this study was to perform a comprehensive analysis of small non-coding RNA levels in spent and unconditioned embryo culture media, along with miRNA levels in blastocoelic fluid samples from human embryos. Methods: miRNAs in unconditioned culture medium from 3 different manufacturers, along with miRNA from day 5 conditioned culture medium, control medium, and corresponding blastocoel fluid from 10 human blastocysts were analyzed with array-based q-PCR analysis. Subsequently, deep sequencing of total and small RNA in day 5 spent culture medium from 5 human blastocysts and corresponding controls was performed. Results: In spite of using state-of-the-art sensitive detection methods, no miRNAs were found to be reliably present in the spent culture medium or the blastocoel fluid. Ct values were above the recommended limit for detection in the array-based analysis, a finding that was confirmed by deep sequencing. The majority of miRNAs identified by deep sequencing were expressed in all samples including control media and seem to originate from sources other than conditioned IVF media. Conclusions: Our findings question the use of miRNAs as a reliable biomarker and highlight the need for a critical methodological approach in miRNA studies. Interestingly, tiRNA fragments appear to be overexpressed in conditioned IVF media samples and could potentially be a novel biomarker worthy of investigation.

Original languageEnglish
JournalJournal of Assisted Reproduction and Genetics
Volume37
Issue9
Pages (from-to)2199–2209
Number of pages11
ISSN1058-0468
DOIs
Publication statusPublished - Sep 2020

    Research areas

  • ART, Biomarker, Culture medium, miRNA, tiRNA

See relations at Aarhus University Citationformats

ID: 194140656