TY - JOUR
T1 - Clusteromics V
T2 - Organic Enhanced Atmospheric Cluster Formation
AU - Ayoubi, Daniel
AU - Knattrup, Yosef
AU - Elm, Jonas
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/3
Y1 - 2023/3
N2 - Formic acid (FA) is a prominent candidate for organic enhanced nucleation due to its high abundance and stabilizing effect on smaller clusters. Its role in new particle formation is studied through the use of state-of-the-art quantum chemical methods on the cluster systems (acid)1-2(FA)1(base)1-2 with the acids being sulfuric acid (SA)/methanesulfonic acid (MSA) and the bases consisting of ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). A funneling approach is used to determine the cluster structures with initial configurations generated through the ABCluster program, followed by semiempirical PM7 and ωB97X-D/6-31++G(d,p) calculations. The final binding free energy is calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory using the quasi-harmonic approximation. Cluster dynamics simulations show that FA has a minuscule or negligible effect on the MSA-FA-base systems as well as most of the SA-FA-base systems. The SA-FA-DMA cluster system shows the highest influence from FA with an enhancement of 21%, compared to its non-FA counterpart.
AB - Formic acid (FA) is a prominent candidate for organic enhanced nucleation due to its high abundance and stabilizing effect on smaller clusters. Its role in new particle formation is studied through the use of state-of-the-art quantum chemical methods on the cluster systems (acid)1-2(FA)1(base)1-2 with the acids being sulfuric acid (SA)/methanesulfonic acid (MSA) and the bases consisting of ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). A funneling approach is used to determine the cluster structures with initial configurations generated through the ABCluster program, followed by semiempirical PM7 and ωB97X-D/6-31++G(d,p) calculations. The final binding free energy is calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory using the quasi-harmonic approximation. Cluster dynamics simulations show that FA has a minuscule or negligible effect on the MSA-FA-base systems as well as most of the SA-FA-base systems. The SA-FA-DMA cluster system shows the highest influence from FA with an enhancement of 21%, compared to its non-FA counterpart.
UR - http://www.scopus.com/inward/record.url?scp=85149105193&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c00251
DO - 10.1021/acsomega.3c00251
M3 - Journal article
C2 - 36936339
AN - SCOPUS:85149105193
SN - 2470-1343
VL - 8
SP - 9621
EP - 9629
JO - ACS Omega
JF - ACS Omega
IS - 10
ER -