Aarhus University Seal

Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • K.E. Huff Hartz, Carnegie Mellon University
  • ,
  • Torben Rosenørn, Institut for Læring og Filosofi, Denmark
  • S.R. Ferchak, Carnegie Mellon University
  • ,
  • T.M. Raymond, Bucknell University
  • ,
  • M. Bilde
  • N.M. Donahue, Carnegie Mellon University
  • ,
  • S.N. Pandis, Carnegie Mellon University
The ability of biogenic secondary organic aerosol (SOA) to contribute to the concentration of cloud condensation nuclei (CCN) in the atmosphere is examined. Aerosol is generated by the ozonolysis reaction of monoterpenes (α-pinene, β-pinene, 3-carene, and limonene) and sesquiterpenes (β-caryophyllene, α-humulene, and α-cedrene) in a 10 m temperature-controlled Teflon smog chamber. In some cases, a self-seeding technique is used, which enables high particle concentrations with the desired diameters without compromising particle composition and purity. The monoterpene SOA is excellent CCN material, and it activates similarly (average activation diameter equals 48 ± 8 nm at 1% supersaturation for the species used in this work) to highly water-soluble organic species. Its effective solubility in water was estimated to be in the range of 0.07-0.40 g solute/g HO. CCN measurements for sesquiterpene SOA (average activation diameter equals 120 ± 20 nm at 1% supersaturation for the species used in this work) show that it is less CCN active than monoterpene SOA. The initial terpene mixing ratio (between 3 and 100 ppb) does not affect the CCN activation for freshly generated SOA.
Original languageEnglish
JournalJournal of Geophysical Research F: Earth Surface
Pages (from-to)D14208-15
Number of pages8
Publication statusPublished - 2005
Externally publishedYes

See relations at Aarhus University Citationformats

ID: 55037084