TY - JOUR
T1 - Characterization of extracellular redox enzyme concentrations in response to exercise in humans
AU - Wadley, Alex J.
AU - Keane, Gary
AU - Cullen, Tom
AU - James, Lynsey
AU - Vautrinot, Jordan
AU - Davies, Matthew
AU - Hussey, Bethan
AU - Hunter, David J.
AU - Mastana, Sarabjit
AU - Holliday, Adrian
AU - Petersen, Steen V.
AU - Bishop, Nicolette C.
AU - Lindley, Martin R.
AU - Coles, Steven J.
PY - 2019/9
Y1 - 2019/9
N2 - Redox enzymes modulate intracellular redox balance and are secreted in response to cellular oxidative stress, potentially modulating systemic inflammation. Both aerobic and resistance exercise are known to cause acute systemic oxidative stress and inflammation; however, how redox enzyme concentrations alter in extracellular fluids following bouts of either type of exercise is unknown. Recreationally active men (n = 26, mean ± SD: age 28 ± 8 yr) took part in either: 1) two separate energy-matched cycling bouts: one of moderate intensity (MOD) and a bout of high intensity interval exercise (HIIE) or 2) an eccentric-based resistance exercise protocol (RES). Alterations in plasma (study 1) and serum (study 2) peroxiredoxin (PRDX)-2, PRDX-4, superoxide dismutase-3 (SOD3), thioredoxin (TRX-1), TRX-reductase and interleukin (IL)-6 were assessed before and at various timepoints after exercise. There was a significant increase in SOD3 (+1.5 ng/mL) and PRDX-4 (+5.9 ng/mL) concentration following HIIE only, peaking at 30- and 60-min post-exercise respectively. TRX-R decreased immediately and 60 min following HIIE (-7.3 ng/mL) and MOD (-8.6 ng/mL), respectively. In non-resistance trained men, no significant changes in redox enzyme concentrations were observed up to 48 h following RES, despite significant muscle damage. IL-6 concentration increased in response to all trials, however there was no significant relationship between absolute or exercise-induced changes in redox enzyme concentrations. These results collectively suggest that HIIE, but not MOD or RES increase the extracellular concentration of PRDX-4 and SOD3. Exercise-induced changes in redox enzyme concentrations do not appear to directly relate to systemic changes in IL-6 concentration. NEW & NOTEWORTHY Two studies were conducted to characterize changes in redox enzyme concentrations after single bouts of exercise to investigate the emerging association between extracellular redox enzymes and inflammation. We provide evidence that SOD3 and PRDX-4 concentration increased following high-intensity aerobic but not eccentric-based resistance exercise. Changes were not associated with IL-6. The results provide a platform to investigate the utility of SOD3 and PRDX-4 as biomarkers of oxidative stress following exercise.
AB - Redox enzymes modulate intracellular redox balance and are secreted in response to cellular oxidative stress, potentially modulating systemic inflammation. Both aerobic and resistance exercise are known to cause acute systemic oxidative stress and inflammation; however, how redox enzyme concentrations alter in extracellular fluids following bouts of either type of exercise is unknown. Recreationally active men (n = 26, mean ± SD: age 28 ± 8 yr) took part in either: 1) two separate energy-matched cycling bouts: one of moderate intensity (MOD) and a bout of high intensity interval exercise (HIIE) or 2) an eccentric-based resistance exercise protocol (RES). Alterations in plasma (study 1) and serum (study 2) peroxiredoxin (PRDX)-2, PRDX-4, superoxide dismutase-3 (SOD3), thioredoxin (TRX-1), TRX-reductase and interleukin (IL)-6 were assessed before and at various timepoints after exercise. There was a significant increase in SOD3 (+1.5 ng/mL) and PRDX-4 (+5.9 ng/mL) concentration following HIIE only, peaking at 30- and 60-min post-exercise respectively. TRX-R decreased immediately and 60 min following HIIE (-7.3 ng/mL) and MOD (-8.6 ng/mL), respectively. In non-resistance trained men, no significant changes in redox enzyme concentrations were observed up to 48 h following RES, despite significant muscle damage. IL-6 concentration increased in response to all trials, however there was no significant relationship between absolute or exercise-induced changes in redox enzyme concentrations. These results collectively suggest that HIIE, but not MOD or RES increase the extracellular concentration of PRDX-4 and SOD3. Exercise-induced changes in redox enzyme concentrations do not appear to directly relate to systemic changes in IL-6 concentration. NEW & NOTEWORTHY Two studies were conducted to characterize changes in redox enzyme concentrations after single bouts of exercise to investigate the emerging association between extracellular redox enzymes and inflammation. We provide evidence that SOD3 and PRDX-4 concentration increased following high-intensity aerobic but not eccentric-based resistance exercise. Changes were not associated with IL-6. The results provide a platform to investigate the utility of SOD3 and PRDX-4 as biomarkers of oxidative stress following exercise.
KW - Antioxidant
KW - Oxidative stress
KW - Peroxiredoxin
KW - Reactive oxygen species
KW - Redoxkine
UR - http://www.scopus.com/inward/record.url?scp=85072266671&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00340.2019
DO - 10.1152/japplphysiol.00340.2019
M3 - Journal article
C2 - 31246554
AN - SCOPUS:85072266671
SN - 8750-7587
VL - 127
SP - 858
EP - 866
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -