Cerebral water content mapping in cirrhosis patients with and without manifest HE

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Hepatic encephalopathy (HE) is a frequent and debilitating complication of cirrhosis and its pathogenesis is not definitively clarified. Recent hypotheses focus on the possible existence of low-grade cerebral edema due to accumulation of osmolytes secondary to hyperammonemia. In the present study we investigated increases in cerebral water content by a novel magnetic resonance impedance (MRI) technique in cirrhosis patients with and without clinically manifest HE. We used a 3 T MRI technique for quantitative cerebral water content mapping in nine cirrhosis patients with an episode of overt HE, ten cirrhosis patients who never suffered from HE, and ten healthy aged-matched controls. We tested for differences between groups by statistical non-parametric mapping (SnPM) for a voxel-based spatial evaluation. The patients with HE had significantly higher water content in white matter than the cirrhosis patients (0.6%), who in turn, had significantly higher content than the controls (1.7%). Although the global gray matter water content did not differ between the groups, the patients with HE had markedly higher thalamic water content than patients who never experienced HE (6.0% higher). We found increased white matter water content in cirrhosis patients, predominantly in those with manifest HE. This confirms the presence of increasing degrees of low-grade edema with exacerbation of pathology. The thalamic edema in manifest HE may lead to compromised basal ganglia-thalamo-cortical circuits, in accordance with the major clinical symptoms of HE. The identification of the thalamus as particularly inflicted in manifest HE is potentially relevant to the pathophysiology of HE.

Original languageEnglish
JournalMetabolic Brain Disease
Pages (from-to)1071-1076
Number of pages6
Publication statusPublished - 2019

    Research areas

  • Absolute free water content, Cerebral edema, Hepatic encephalopathy, Liver cirrhosis, Magnetic resonance imaging

See relations at Aarhus University Citationformats

ID: 157894084