TY - JOUR
T1 - Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces
AU - Dolatshahi-Pirouz, A
AU - Jensen, Thomas Hartvig Lindkjær
AU - Kolind, Kristian
AU - Bünger, C
AU - Kassem, M
AU - Foss, M
AU - Besenbacher, F
N1 - Copyright © 2011 Elsevier B.V. All rights reserved.
PY - 2011
Y1 - 2011
N2 - In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin was monitored by Quartz Crystal Microbalance with Dissipation (QCM-D) at two different concentrations, 20μg/ml and 200μg/ml, and the fibronectin adsorption experiments were complemented with antibody measurements. The QCM-D results show that the surface mass uptake is largest on the Au surfaces, while the number of polyclonal and monoclonal antibodies directed against the cell-binding domain (CB-domain) on the fibronectin (Fn) is significantly larger on the (HA) surfaces. Moreover, a higher number of antibodies bound to the fibronectin coatings formed from the highest bulk fibronection concentration. In subsequent cell studies with hMSC's we studied the cell spreading, cytoskeletal organization and cell morphology on the respective surfaces. When the cells were adsorbed on the uncoated substrates, a diffuse cell actin cytoskeleton was revealed, and the cells had a highly elongated shape. On the fibronectin coated surfaces the cells adapted to a more polygonal shape with a well-defined actin cytoskeleton, while a larger cell area and roundness values were observed for cells cultured on the coated surfaces. Among the coated surfaces a slightly larger cell area and roundness values was observed on HA as compared to Au. Moreover, the results revealed that the morphology of cells cultured on fibronectin coated HA surfaces were less irregular. In summary we find that fibronectin adsorbs in a more activated state on the HA surfaces, resulting in a slightly different cellular response as compared to the fibronectin coated Au surfaces.
AB - In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin was monitored by Quartz Crystal Microbalance with Dissipation (QCM-D) at two different concentrations, 20μg/ml and 200μg/ml, and the fibronectin adsorption experiments were complemented with antibody measurements. The QCM-D results show that the surface mass uptake is largest on the Au surfaces, while the number of polyclonal and monoclonal antibodies directed against the cell-binding domain (CB-domain) on the fibronectin (Fn) is significantly larger on the (HA) surfaces. Moreover, a higher number of antibodies bound to the fibronectin coatings formed from the highest bulk fibronection concentration. In subsequent cell studies with hMSC's we studied the cell spreading, cytoskeletal organization and cell morphology on the respective surfaces. When the cells were adsorbed on the uncoated substrates, a diffuse cell actin cytoskeleton was revealed, and the cells had a highly elongated shape. On the fibronectin coated surfaces the cells adapted to a more polygonal shape with a well-defined actin cytoskeleton, while a larger cell area and roundness values were observed for cells cultured on the coated surfaces. Among the coated surfaces a slightly larger cell area and roundness values was observed on HA as compared to Au. Moreover, the results revealed that the morphology of cells cultured on fibronectin coated HA surfaces were less irregular. In summary we find that fibronectin adsorbs in a more activated state on the HA surfaces, resulting in a slightly different cellular response as compared to the fibronectin coated Au surfaces.
U2 - 10.1016/j.colsurfb.2010.12.004
DO - 10.1016/j.colsurfb.2010.12.004
M3 - Journal article
C2 - 21237623
SN - 0927-7765
VL - 84
SP - 18
EP - 25
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
IS - 1
ER -