Breakdown of Whole-brain Dynamics in Preterm-born Children

Nelly Padilla, Victor M. Saenger, Tim J. van Hartevelt, Henrique M. Fernandes, Finn Lennartsson, Jesper L.R. Andersson, Morten Kringelbach, Gustavo Deco, Ulrika Åden

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

9 Downloads (Pure)


The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.

Original languageEnglish
JournalCerebral Cortex
Pages (from-to)1159-1170
Number of pages12
Publication statusPublished - 2020


  • brain development
  • brain dynamics
  • functional connectivity
  • neurodevelopment
  • prematurity

Cite this