Abstract
The study of quantum mechanical bound states is as old as quantum theory itself. Yet, it took many years to realize that three-body borromean systems that are bound when any two-body subsystem is unbound are abundant in nature. Here we demonstrate the existence of borromean systems of spin-polarized (spinless) identical fermions in two spatial dimensions. The ground state with zero orbital (planar) angular momentum exists in a borromean window between critical two- and three-body strengths. The doubly degenerate first excited states of angular momentum one appears only very close to the two-body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states in two dimensions.
Original language | English |
---|---|
Article number | 185302 |
Journal | Journal of Physics B: Atomic, Molecular and Optical Physics |
Volume | 47 |
Issue | 18 |
ISSN | 0953-4075 |
DOIs | |
Publication status | Published - 28 Aug 2014 |