Aarhus University Seal / Aarhus Universitets segl

Bernstein-Sato identities and conformal symmetry breaking operators

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

Bernstein-Sato identities and conformal symmetry breaking operators. / Fischmann, Matthias; Ørsted, Bent; Somberg, Petr.

In: Journal of Functional Analysis, Vol. 277, No. 11, 108219, 12.2019.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

Fischmann, M, Ørsted, B & Somberg, P 2019, 'Bernstein-Sato identities and conformal symmetry breaking operators', Journal of Functional Analysis, vol. 277, no. 11, 108219. https://doi.org/10.1016/j.jfa.2019.04.002

APA

Fischmann, M., Ørsted, B., & Somberg, P. (2019). Bernstein-Sato identities and conformal symmetry breaking operators. Journal of Functional Analysis, 277(11), [108219]. https://doi.org/10.1016/j.jfa.2019.04.002

CBE

Fischmann M, Ørsted B, Somberg P. 2019. Bernstein-Sato identities and conformal symmetry breaking operators. Journal of Functional Analysis. 277(11):Article 108219. https://doi.org/10.1016/j.jfa.2019.04.002

MLA

Fischmann, Matthias, Bent Ørsted and Petr Somberg. "Bernstein-Sato identities and conformal symmetry breaking operators". Journal of Functional Analysis. 2019. 277(11). https://doi.org/10.1016/j.jfa.2019.04.002

Vancouver

Fischmann M, Ørsted B, Somberg P. Bernstein-Sato identities and conformal symmetry breaking operators. Journal of Functional Analysis. 2019 Dec;277(11). 108219. https://doi.org/10.1016/j.jfa.2019.04.002

Author

Fischmann, Matthias ; Ørsted, Bent ; Somberg, Petr. / Bernstein-Sato identities and conformal symmetry breaking operators. In: Journal of Functional Analysis. 2019 ; Vol. 277, No. 11.

Bibtex

@article{d84202b1702b4cafa1a0fc1ccf9e77c4,
title = "Bernstein-Sato identities and conformal symmetry breaking operators",
abstract = "We present Bernstein-Sato identities for scalar-, spinor- and differential form-valued distribution kernels on Euclidean space associated to conformal symmetry breaking operators. The associated Bernstein-Sato operators lead to partially new formulae for conformal symmetry breaking differential operators on functions, spinors and differential forms.",
keywords = "Bernstein-Sato operator, Conformal symmetry breaking (differential) operator, Intertwining operator, Riesz distribution",
author = "Matthias Fischmann and Bent {\O}rsted and Petr Somberg",
year = "2019",
month = dec,
doi = "10.1016/j.jfa.2019.04.002",
language = "English",
volume = "277",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Academic Press",
number = "11",

}

RIS

TY - JOUR

T1 - Bernstein-Sato identities and conformal symmetry breaking operators

AU - Fischmann, Matthias

AU - Ørsted, Bent

AU - Somberg, Petr

PY - 2019/12

Y1 - 2019/12

N2 - We present Bernstein-Sato identities for scalar-, spinor- and differential form-valued distribution kernels on Euclidean space associated to conformal symmetry breaking operators. The associated Bernstein-Sato operators lead to partially new formulae for conformal symmetry breaking differential operators on functions, spinors and differential forms.

AB - We present Bernstein-Sato identities for scalar-, spinor- and differential form-valued distribution kernels on Euclidean space associated to conformal symmetry breaking operators. The associated Bernstein-Sato operators lead to partially new formulae for conformal symmetry breaking differential operators on functions, spinors and differential forms.

KW - Bernstein-Sato operator

KW - Conformal symmetry breaking (differential) operator

KW - Intertwining operator

KW - Riesz distribution

UR - http://www.scopus.com/inward/record.url?scp=85068528023&partnerID=8YFLogxK

U2 - 10.1016/j.jfa.2019.04.002

DO - 10.1016/j.jfa.2019.04.002

M3 - Journal article

AN - SCOPUS:85068528023

VL - 277

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 11

M1 - 108219

ER -