TY - JOUR
T1 - Behavioral Deficits Are Accompanied by Immunological and Neurochemical Changes in a Mouse Model for Neuropsychiatric Lupus (NP-SLE)
AU - Li, Yan
AU - Eskelund, Amanda
AU - Zhou, H
AU - Budac, David P
AU - Sanchez, Connie
AU - Gulinello, M
PY - 2015/7/3
Y1 - 2015/7/3
N2 - Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. Neuropsychiatric symptoms, particularly affective and cognitive indications, may be among the earliest manifestations of SLE. Among the potential pathophysiological mechanisms responsible for NP-SLE are increased peripheral pro-inflammatory cytokines, subsequent induction of indoleamine-2,3-dioxygenase (IDO) and activation of the kynurenine pathway. In the MRL/MpJ-Faslpr (MRL/lpr) murine model of lupus, depression-like behavior and cognitive dysfunction is evident before significant levels of autoantibody titers and nephritis are present. We examined the behavioral profile of MRL/lpr mice and their congenic controls, a comprehensive plasma cytokine and chemokine profile, and brain levels of serotonin and kynurenine pathway metabolites. Consistent with previous studies, MRL/lpr mice had increased depression-like behavior and visuospatial memory impairment. Plasma levels of different inflammatory molecules (Haptoglobin, interleukin 10 (IL-10), interferon γ-inducible protein 10 (IP-10/CXCL10), lymphotactin, macrophage inhibitory protein 3β (MIP-3β/CCL19), monocyte chemotactic protein 1, 3 and 5 (MCP-1/CCL2, MCP-3/CCL7, MCP-5/CCL12), vascular cell adhesion molecule 1 (VCAM-1), lymphotactin and interferon γ (IFN-γ)) were increased in MRL/lpr mice. In cortex and hippocampus, MRL/lpr mice had increased levels of kynurenine pathway metabolites (kynurenine, 3-hydroxykynurenine, 3-hydroxynthranilic acid and quinolinic acid). Therefore, our study suggests that increased cytokine expression may be critical in the regulation subtle aspects of brain function in NP-SLE via induction of IDO and tryptophan/kynurenine metabolism.
AB - Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. Neuropsychiatric symptoms, particularly affective and cognitive indications, may be among the earliest manifestations of SLE. Among the potential pathophysiological mechanisms responsible for NP-SLE are increased peripheral pro-inflammatory cytokines, subsequent induction of indoleamine-2,3-dioxygenase (IDO) and activation of the kynurenine pathway. In the MRL/MpJ-Faslpr (MRL/lpr) murine model of lupus, depression-like behavior and cognitive dysfunction is evident before significant levels of autoantibody titers and nephritis are present. We examined the behavioral profile of MRL/lpr mice and their congenic controls, a comprehensive plasma cytokine and chemokine profile, and brain levels of serotonin and kynurenine pathway metabolites. Consistent with previous studies, MRL/lpr mice had increased depression-like behavior and visuospatial memory impairment. Plasma levels of different inflammatory molecules (Haptoglobin, interleukin 10 (IL-10), interferon γ-inducible protein 10 (IP-10/CXCL10), lymphotactin, macrophage inhibitory protein 3β (MIP-3β/CCL19), monocyte chemotactic protein 1, 3 and 5 (MCP-1/CCL2, MCP-3/CCL7, MCP-5/CCL12), vascular cell adhesion molecule 1 (VCAM-1), lymphotactin and interferon γ (IFN-γ)) were increased in MRL/lpr mice. In cortex and hippocampus, MRL/lpr mice had increased levels of kynurenine pathway metabolites (kynurenine, 3-hydroxykynurenine, 3-hydroxynthranilic acid and quinolinic acid). Therefore, our study suggests that increased cytokine expression may be critical in the regulation subtle aspects of brain function in NP-SLE via induction of IDO and tryptophan/kynurenine metabolism.
U2 - 10.3390/ijms160715150
DO - 10.3390/ijms160715150
M3 - Journal article
C2 - 26151848
SN - 1661-6596
VL - 16
SP - 15150
EP - 15171
JO - International Journal of Molecular Sciences (Online)
JF - International Journal of Molecular Sciences (Online)
IS - 7
ER -