Automatic selection of reference taxa for protein-protein interaction prediction with phylogenetic profiling

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Martin Simonsen
  • ,
  • S.R. Maetschke, Australian Research Council Centre of Excellence in Bioinformatics
  • ,
  • M.A. Ragan, Australian Research Council Centre of Excellence in Bioinformatics
Motivation: Phylogenetic profiling methods can achieve good accuracy in predicting protein-protein interactions, especially in prokaryotes. Recent studies have shown that the choice of reference taxa (RT) is critical for accurate prediction, but with more than 2500 fully sequenced taxa publicly available, identifying the most-informative RT is becoming increasingly difficult. Previous studies on the selection of RT have provided guidelines for manual taxon selection, and for eliminating closely related taxa. However, no general strategy for automatic selection of RT is currently available.Results: We present three novel methods for automating the selection of RT, using machine learning based on known protein-protein interaction networks. One of these methods in particular, Tree-Based Search, yields greatly improved prediction accuracies. We further show that different methods for constituting phylogenetic profiles often require very different RT sets to support high prediction accuracy.
Original languageEnglish
Pages (from-to)851-857
Number of pages7
Publication statusPublished - 1 Mar 2012

See relations at Aarhus University Citationformats

ID: 52651669