TY - JOUR
T1 - Assessing Contaminant Mass Discharge Uncertainty With Application of Hydraulic Conductivities Derived From Geoelectrical Cross-Borehole Induced Polarization and Other Methods
AU - Thalund-Hansen, Rasmus
AU - Troldborg, Mads
AU - Levy, Léa
AU - Christiansen, Anders Vest
AU - Bording, Thue S.
AU - Bjerg, Poul L.
N1 - Publisher Copyright:
© 2023. The Authors.
PY - 2023/8
Y1 - 2023/8
N2 - A new methodology was developed to support contaminant mass discharge (CMD)-based risk assessment of groundwater contamination downgradient of point source zones. Geoelectrical cross-borehole induced polarization (IP) data were collected at a site undergoing in situ remediation of chlorinated solvents for determining 2D hydraulic conductivity (K) distributions with an inversion model resolution of 0.15 m (vertically) x 0.50 m (horizontally) in three control planes from 10 to 20 m depth. Additionally, 18 slug tests and 31 grain size distribution analyses (GSA) from the control planes, were used for K-estimation. The geometric means and variance of the IP, slug test, and GSA derived K-estimates were consistent with previously studied sandy aquifers. Furthermore, the vertical variation in K between two geological settings, a sandy till and a meltwater sand formation, was clearly identified by the IP K-estimates. The vertical variation was backed up by hydraulic profiling tool (HPT) measurements. Random realizations of CMD were simulated based on the cross-borehole IP derived K-values. For comparison, the CMD was also estimated with a geostatistical conditional simulation approach, using the data from slug tests and GSAs. The high IP resolution captured the small scale variations in K across the transects and led to CMD predictions with a narrow uncertainty interval, whereas slug test and GSA either under- or overestimated the magnitude of the areas with the highest CMD. Applying the geophysical cross-borehole method for estimating K-distributions in addition to traditional methods would improve CMD-based risk assessment and evaluation of remediation performance at contaminated sites.
AB - A new methodology was developed to support contaminant mass discharge (CMD)-based risk assessment of groundwater contamination downgradient of point source zones. Geoelectrical cross-borehole induced polarization (IP) data were collected at a site undergoing in situ remediation of chlorinated solvents for determining 2D hydraulic conductivity (K) distributions with an inversion model resolution of 0.15 m (vertically) x 0.50 m (horizontally) in three control planes from 10 to 20 m depth. Additionally, 18 slug tests and 31 grain size distribution analyses (GSA) from the control planes, were used for K-estimation. The geometric means and variance of the IP, slug test, and GSA derived K-estimates were consistent with previously studied sandy aquifers. Furthermore, the vertical variation in K between two geological settings, a sandy till and a meltwater sand formation, was clearly identified by the IP K-estimates. The vertical variation was backed up by hydraulic profiling tool (HPT) measurements. Random realizations of CMD were simulated based on the cross-borehole IP derived K-values. For comparison, the CMD was also estimated with a geostatistical conditional simulation approach, using the data from slug tests and GSAs. The high IP resolution captured the small scale variations in K across the transects and led to CMD predictions with a narrow uncertainty interval, whereas slug test and GSA either under- or overestimated the magnitude of the areas with the highest CMD. Applying the geophysical cross-borehole method for estimating K-distributions in addition to traditional methods would improve CMD-based risk assessment and evaluation of remediation performance at contaminated sites.
KW - contaminant mass discharge
KW - cross-borehole DCIP
KW - hydraulic conductivity
KW - hydrogeophysics
U2 - 10.1029/2022WR034360
DO - 10.1029/2022WR034360
M3 - Journal article
AN - SCOPUS:85168413144
SN - 0043-1397
VL - 59
JO - Water Resources Research
JF - Water Resources Research
IS - 8
M1 - e2022WR034360
ER -