Abstract
Cellular communication is a fundamental feature to ensure the survival of cellular assemblies, such as multicellular tissue, via coordinated adaption to changes in their surroundings. Consequently, the development of integrated semi-synthetic systems consisting of artificial cells (ACs) and mammalian cells requires feedback-based interactions. Here, we illustrate that ACs can eavesdrop on HepG2 cells focusing on the activity of cytochrome P450 1A2 (CYP1A2), an enzyme from the cytochrome P450 enzyme family. Specifically, d-cysteine is sent as a signal from the ACs via the triggered reduction of disulfide bonds. Simultaneously, HepG2 cells enzymatically convert 2-cyano-6-methoxybenzothiazole into 2-cyano-6-hydroxybenzothiazole that is released in the extracellular space. d-Cysteine and 2-cyano-6-hydroxybenzothiazole react to form d-luciferin. The ACs respond to this signal by converting d-luciferin into luminescence due to the presence of encapsulated luciferase in the ACs. As a result, the ACs can eavesdrop on the mammalian cells to evaluate the level of hepatic CYP1A2 function.
Original language | English |
---|---|
Article number | 20230007 |
Journal | Interface Focus |
Volume | 13 |
Issue | 5 |
Number of pages | 11 |
ISSN | 2042-8898 |
DOIs | |
Publication status | Published - 11 Aug 2023 |
Keywords
- artificial cell
- cell mimicry
- cellular communication
- cytochrome P450