TY - JOUR
T1 - Aromatic amino acid biosynthesis impacts root hair development and symbiotic associations in Lotus japonicus
AU - Montiel, Jesús
AU - García-Soto, Ivette
AU - James, Euan K.
AU - Reid, Dugald
AU - Cárdenas, Luis
AU - Napsucialy-Mendivil, Selene
AU - Ferguson, Shaun
AU - Dubrovsky, Joseph G.
AU - Stougaard, Jens
N1 - Publisher Copyright:
© The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists.
PY - 2023/10
Y1 - 2023/10
N2 - Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
AB - Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
UR - http://www.scopus.com/inward/record.url?scp=85172425561&partnerID=8YFLogxK
U2 - 10.1093/plphys/kiad398
DO - 10.1093/plphys/kiad398
M3 - Journal article
C2 - 37427869
AN - SCOPUS:85172425561
SN - 0032-0889
VL - 193
SP - 1508
EP - 1526
JO - Plant Physiology
JF - Plant Physiology
IS - 2
ER -