Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?

Yongqiang Zhou, Qitao Xiao, Lei Zhou, Kyoung Soon Jang, Yunlin Zhang*, Mi Zhang, Xuhui Lee, Boqiang Qin, Justin D. Brookes, Thomas A. Davidson, Erik Jeppesen

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

20 Citations (Scopus)

Abstract

Lakes actively transform nitrogen (N) and emit disproportionately large amounts of N2O relative to their surface area. Studies have investigated the relative importance of denitrification or nitrification on N2O emissions; however, the linkage between N2O efflux and dissolved organic nitrogen (DON) and carbon (DOC) remains largely unknown. Long-term (2012–2017) seasonal field observations and a series of degradation experiments were used to unravel how DON composition impacts N2O emissions from Lake Taihu, China. In the northwestern part of the lake, large riverine inflow and high N2O emissions occur in all seasons (24.6 ± 25.2 μmol m−2 d−1), coincident with high levels of terrestrial DON and DOC here. The degradation of labile DON and DOC likely enhanced ammonification as supported by the correlations between NH4 +-N and DON, DOC, a(350), and terrestrial humic-like C3. The area with large riverine inputs in the northwestern part of the lake was characterized by low DO which may enhance incomplete aerobic nitrification and incomplete denitrification, both leading to N2O production. Twenty days laboratory experiments indicated greater N2O production in the northwest inflow samples (N2O on day 20: 120.9 nmol L−1 and 17.3 nmol L−1 for bio- and photo-degradation samples, respectively) compared with the central lake samples (N2O on day 20: 20.3 nmol L−1 and 12.3 nmol L−1 for bio- and photo-degradation samples, respectively), despite both having low Chl-a. Our DON and DOC degradation experiments confirmed the occurrence of ammonification along with consumption of NH4 +-N and thereafter NO3 -N. Our results collectively suggest that terrestrial DON fueled ammonification, enhanced nitrification and incomplete denitrification, and thereby became an important contributor to the N2O efflux from Lake Taihu.

Original languageEnglish
Article number138005
JournalScience of the Total Environment
Volume722
Number of pages13
ISSN0048-9697
DOIs
Publication statusPublished - 2020

Keywords

  • Dissolved organic nitrogen (DON)
  • Fluorescence
  • Nitrous oxide (NO)
  • Parallel factor analysis (PARAFAC)
  • Ultrahigh resolution mass spectrometry (FT-ICR MS)

Fingerprint

Dive into the research topics of 'Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?'. Together they form a unique fingerprint.

Cite this