An intuitive representation and analysis of multi-rotor wind turbine whirling modes

Oliver Tierdad Filsoof*, Xuping Zhang*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

3 Citations (Scopus)

Abstract

A multi-rotor wind turbine (MRWT) is a concept that can reduce the size of the rotor blades compared to a single-rotor wind turbine (SRWT). Making a cost-optimized MRWT requires a detailed understanding of its stability properties. This paper aims to establish a physical and intuitive representation of whirling modes for three-bladed isotropic SRWT and MRWT. An aeroelastic simulation of a nonlinear SRWT model is presented to empathize the importance of whirling. The whirling concept is introduced by simplifying the complexity of the wind turbine rotor into two models. From the models, edgewise and flapwise whirling modes are analyzed. An analytical model of a two-rotor wind turbine is examined to present the edgewise whirling modes of MRWT. The flapwise whirling modes for MRWT are introduced by using results from edgewise whirling and findings from previous research. The MRWT whirling analysis shows whirling from multiple rotors creates reaction forces to the supporting structure when the rotors have the same speed. This results in whirling coupling modes at the same natural frequency. One is a rotor symmetric whirling mode where the rotors whirling are in phase and a rotor asymmetric mode where whirling of the rotors are out of phase. The whirling coupling effects are minimized in the case that the rotors have different speeds.

Original languageEnglish
JournalWind Energy
Volume25
Issue3
Pages (from-to)553-572
Number of pages20
ISSN1095-4244
DOIs
Publication statusPublished - Mar 2022

Keywords

  • modal analysis
  • multi-rotor wind turbine
  • whirling

Fingerprint

Dive into the research topics of 'An intuitive representation and analysis of multi-rotor wind turbine whirling modes'. Together they form a unique fingerprint.

Cite this