Ambimodal Bispericyclic [6 + 4]/[4 + 6] Transition State Competes with Diradical Pathways in the Cycloheptatriene Dimerization: Dynamics and Experimental Characterization of Thermal Dimers

Qingyang Zhou, Mathias K. Thøgersen, Nomaan M. Rezayee, Karl Anker Jørgensen*, K. N. Houk*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

The thermal dimerization of cycloheptatriene is predicted to occur by a concerted [6 + 4] cycloaddition via an ambimodal [6 + 4]/[4 + 6] transition state (TS) and a competing stepwise diradical (6 + 2) cycloaddition; both dimers subsequently undergo intramolecular [4 + 2] cycloadditions to afford thermally stable tetracyclic products. The ambimodal TS is the 10π-electron version of the prototype bispericyclic dimerization of cyclopentadiene discovered by Caramella et al. in 2002. Quantum mechanical studies using several common DFT functionals and post-HF methods, ωB97X-D, M06-2X, DLPNO-CCSD(T), NEVPT2, and PWPB95-D3(BJ), and quasiclassical molecular dynamics simulations provide details of bond timing and bifurcation pathways. By comparing the ambimodal [6 + 4]/[4 + 6] TS for cycloheptatriene dimerization with the ambimodal [4 + 2]/[2 + 4] TS of cyclopentadiene dimerization, we found that the high distortion energy in cycloheptatriene dimerization is the key to its relatively high energy barrier. The computational investigations were coupled with experimental studies of the cycloheptatriene dimerization, which resulted in the isolation of the two tetracyclic dimers. At lower temperature, the product from the predicted exo-[6 + 4]/[4 + 6] cycloaddition, followed by a subsequent intramolecular [4 + 2] cycloaddition, predominantly forms, while at higher temperature, the diradical (6 + 2) cycloadduct is the major product.

Original languageEnglish
JournalJournal of the American Chemical Society
Volume144
Issue48
Pages (from-to)22251-22261
Number of pages11
ISSN0002-7863
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Ambimodal Bispericyclic [6 + 4]/[4 + 6] Transition State Competes with Diradical Pathways in the Cycloheptatriene Dimerization: Dynamics and Experimental Characterization of Thermal Dimers'. Together they form a unique fingerprint.

Cite this