Altered conformation of α-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson's disease

Luis Fonseca-Ornelas, Thibault Viennet, Matteo Rovere, Haiyang Jiang, Lei Liu, Silke Nuber, Maria Ericsson, Haribabu Arthanari, Dennis J. Selkoe*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

20 Citations (Scopus)

Abstract

While misfolding of alpha-synuclein (αSyn) is central to the pathogenesis of Parkinson's disease (PD), fundamental questions about its structure and function at the synapse remain unanswered. We examine synaptosomes from non-transgenic and transgenic mice expressing wild-type human αSyn, the E46K fPD-causing mutation, or an amplified form of E46K (“3K”). Synaptosomes from mice expressing the 3K mutant show reduced Ca2+-dependent vesicle exocytosis, altered synaptic vesicle ultrastructure, decreased SNARE complexes, and abnormal levels of certain synaptic proteins. With our intra-synaptosomal nuclear magnetic resonance (NMR) method, we reveal that WT αSyn participates in heterogeneous interactions with synaptic components dependent on endogenous αSyn and synaptosomal integrity. The 3K mutation markedly alters these interactions. The synaptic microenvironment is necessary for αSyn to reach its native conformations and establish a physiological interaction network. Its inability to populate diverse conformational ensembles likely represents an early step in αSyn dysfunction that contributes to the synaptotoxicity observed in synucleinopathies.

Original languageEnglish
Article number109333
JournalCell Reports
Volume36
Issue1
Number of pages17
ISSN2211-1247
DOIs
Publication statusPublished - 6 Jul 2021
Externally publishedYes

Keywords

  • alpha-synuclein
  • in-cell NMR
  • neurodegeneration
  • Parkinson's disease
  • post-translational modifications
  • protein folding
  • synapse

Fingerprint

Dive into the research topics of 'Altered conformation of α-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson's disease'. Together they form a unique fingerprint.

Cite this