TY - JOUR
T1 - All-solid-state sodium-ion batteries operating at room temperature based on NASICON-type NaTi2(PO4)3 cathode and ceramic NASICON solid electrolyte
T2 - A complete in situ synchrotron X-ray study
AU - Pandit, Bidhan
AU - Johansen, Morten
AU - Andersen, Bettina P.
AU - Martínez-Cisneros, Cynthia S.
AU - Levenfeld, Belen
AU - Ravnsbæk, Dorthe B.
AU - Varez, Alejandro
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/9
Y1 - 2023/9
N2 - All-solid-state sodium-ion batteries that work at ambient temperature are a potential approach for large-scale energy storage systems. Nowadays, ceramic solid electrolytes are gaining attention because of their good ionic conductivity and excellent mechanical and chemical stabilities. Furthermore, a good interface between electrode and solid electrolyte is also required to achieve successful cell performances. In this work, sintered ceramic layer electrolyte Na3.16Zr1.84Y0.16Si2PO12, with high ionic conductivity (0.202 mS/cm at room temperature), are prepared by using uniaxial pressing followed by a sintering process. The conductive carbon coated NASICON material (NaTi2(PO4)3/C) exhibits, as cathode material, enhanced rate capability and stability for sodium ion batteries for high carbon (18.95 %) coated sample. At C/10, the optimized cathode (with higher carbon content) achieves a remarkable initial discharge capacity of 107.3 mAh/g (reversible capacity of 101.4 mAh/g), a sufficient rate capability up to a rate of 10C, and a long cycle life (capacity retention of 58% after 950 cycles). The one-stage reversible biphasic reaction mechanism and potential-dependent structure–property of NaTi2(PO4)3 can be explained by employing in situ X-ray synchrotron method. Sequential Rietveld refinements of the in situ data show the evolution of the Na-poor NaTi2(PO4)3 and Na-rich Na3Ti2(PO4)3 phase fractions (wt%), unit cell characteristics, and unit cell volume. The design of an all-solid-state sodium ion half-cell with a NaTi2(PO4)3/C cathode and a Na3.16Zr1.84Y0.16Si2PO12 solid-state electrolyte interface results in stable capacity of 83.6 mAh/g at C/10 and excellent reversible capacity at high C-rate. The results show that sintered NASICON-based electrolytes can significantly contribute for the fabrication of all-solid-state sodium-ion battery due to the superior conductivity and stability.
AB - All-solid-state sodium-ion batteries that work at ambient temperature are a potential approach for large-scale energy storage systems. Nowadays, ceramic solid electrolytes are gaining attention because of their good ionic conductivity and excellent mechanical and chemical stabilities. Furthermore, a good interface between electrode and solid electrolyte is also required to achieve successful cell performances. In this work, sintered ceramic layer electrolyte Na3.16Zr1.84Y0.16Si2PO12, with high ionic conductivity (0.202 mS/cm at room temperature), are prepared by using uniaxial pressing followed by a sintering process. The conductive carbon coated NASICON material (NaTi2(PO4)3/C) exhibits, as cathode material, enhanced rate capability and stability for sodium ion batteries for high carbon (18.95 %) coated sample. At C/10, the optimized cathode (with higher carbon content) achieves a remarkable initial discharge capacity of 107.3 mAh/g (reversible capacity of 101.4 mAh/g), a sufficient rate capability up to a rate of 10C, and a long cycle life (capacity retention of 58% after 950 cycles). The one-stage reversible biphasic reaction mechanism and potential-dependent structure–property of NaTi2(PO4)3 can be explained by employing in situ X-ray synchrotron method. Sequential Rietveld refinements of the in situ data show the evolution of the Na-poor NaTi2(PO4)3 and Na-rich Na3Ti2(PO4)3 phase fractions (wt%), unit cell characteristics, and unit cell volume. The design of an all-solid-state sodium ion half-cell with a NaTi2(PO4)3/C cathode and a Na3.16Zr1.84Y0.16Si2PO12 solid-state electrolyte interface results in stable capacity of 83.6 mAh/g at C/10 and excellent reversible capacity at high C-rate. The results show that sintered NASICON-based electrolytes can significantly contribute for the fabrication of all-solid-state sodium-ion battery due to the superior conductivity and stability.
KW - All-solid-state battery
KW - Cathode material
KW - NASICON
KW - NaTi(PO)
KW - Sodium-ion battery
UR - http://www.scopus.com/inward/record.url?scp=85165705140&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.144509
DO - 10.1016/j.cej.2023.144509
M3 - Journal article
AN - SCOPUS:85165705140
SN - 1385-8947
VL - 472
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 144509
ER -