TY - JOUR
T1 - Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets
AU - Zhao, Jia
AU - Wang, Gefei
AU - Ming, Jingsi
AU - Lin, Zhixiang
AU - Wang, Yang
AU - Agarwal, Snigdha
AU - Agrawal, Aditi
AU - Al-Moujahed, Ahmad
AU - Alam, Alina
AU - Albertelli, Megan A.
AU - Allegakoen, Paul
AU - Ambrosi, Thomas
AU - Antony, Jane
AU - Artandi, Steven
AU - Aujard, Fabienne
AU - Awayan, Kyle
AU - Baghel, Ankit
AU - Bakerman, Isaac
AU - Bakken, Trygve E.
AU - Baruni, Jalal
AU - Beachy, Philip
AU - Bilen, Biter
AU - Botvinnik, Olga
AU - Boyd, Scott D.
AU - Burhan, Deviana
AU - Casey, Kerriann M.
AU - Chan, Charles
AU - Chang, Charles A.
AU - Chang, Stephen
AU - Chen, Ming
AU - Clarke, Michael F.
AU - Crasta, Sheela
AU - Culver, Rebecca
AU - D’Addabbo, Jessica
AU - Darmanis, Spyros
AU - Dehghannasiri, Roozbeh
AU - Ding, Song Lin
AU - Duffy, Connor V.
AU - Epelbaum, Jacques
AU - Espinoza, F. Hernán
AU - Ezran, Camille
AU - Farup, Jean
AU - Ferrell, James E.
AU - Frank, Hannah K.
AU - Fuller, Margaret
AU - Gillich, Astrid
AU - Godoy, Elias
AU - de Morree, Antoine
AU - Rando, Thomas A.
AU - Wang, Bo
AU - The Tabula Microcebus Consortium
AU - Wu, Angela Ruohao
AU - Yang, Can
PY - 2022/5
Y1 - 2022/5
N2 - The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human.
AB - The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human.
UR - http://www.scopus.com/inward/record.url?scp=85134019135&partnerID=8YFLogxK
U2 - 10.1038/s43588-022-00251-y
DO - 10.1038/s43588-022-00251-y
M3 - Journal article
C2 - 38177826
AN - SCOPUS:85134019135
SN - 2662-8457
VL - 2
SP - 317
EP - 330
JO - Nature Computational Science
JF - Nature Computational Science
IS - 5
ER -