Absorption of α-tocopheryl acetate is limited in mink kits (Mustela vison) during weaning

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Bioavailability of α-tocopherol varies with source, dose and duration of supplementation. The effect of source and dose of α-tocopherol on response of α-tocopherol stereoisomers in plasma and tissues of mink kits during the weaning period was studied. Twelve mink kits were euthanised in CO2 at the beginning of the experiment, and 156 mink kits (12 replicates per treatment group) were randomly assigned to thirteen treatment groups: no added α-tocopherol in the feed (0 dose) or four different doses (50, 75, 100 and 150 mg/kg of diet) of RRR-α-tocopherol (ALC), RRR-α-tocopheryl acetate (ACT) or all-rac-α-tocopheryl acetate (SYN). Six mink kits per treatment group were euthanised 3 weeks after initiation of the experiment, and the remaining six were euthanised 6 weeks after initiation of the experiment. The RRR-α-tocopherol content in plasma, liver, heart and lungs was affected by interaction between source and dose (P < 0.01 for all). The highest RRR-α-tocopherol content in plasma (13.6 µg/ml; LS-means for source across dose and week), liver (13.6 µg/mg), heart (7.6 µg/mg) and lungs (9.8 µg/mg) was observed in mink kits fed ALC. The RRR-α-tocopherol content in plasma and tissues depended on source and dose interaction and increased linearly with supplementation. In conclusion, the interaction between source and dose reveals a limitation in hydrolysis of ester bond in α-tocopheryl acetate in mink kits around weaning as the likely causative explanation for the higher response of ALC at the highest doses. Thus, considerable attention has to be paid to the source of α-tocopherol during weaning of mink kits fed a high dose of α-tocopherol.

Original languageEnglish
Article number2686
JournalScientific Reports
Publication statusPublished - Jan 2021

See relations at Aarhus University Citationformats

ID: 210255858