TY - JOUR
T1 - Abelian subcategories of triangulated categories induced by simple minded systems
AU - Jørgensen, Peter
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/5
Y1 - 2022/5
N2 - If k is a field, A a finite dimensional k-algebra, then the simple A-modules form a simple minded collection in the derived category Db(modA). Their extension closure is modA; in particular, it is abelian. This situation is emulated by a general simple minded collection S in a suitable triangulated category C. In particular, the extension closure ⟨ S⟩ is abelian, and there is a tilting theory for such abelian subcategories of C. These statements follow from ⟨ S⟩ being the heart of a bounded t-structure. It is a defining characteristic of simple minded collections that their negative self extensions vanish in every degree. Relaxing this to vanishing in degrees { - w+ 1 , … , - 1 } where w is a positive integer leads to the rich, parallel notion of w-simple minded systems, which have recently been the subject of vigorous interest. If S is a w-simple minded system for some w⩾ 2 , then ⟨ S⟩ is typically not the heart of a t-structure. Nevertheless, using different methods, we will prove that ⟨ S⟩ is abelian and that there is a tilting theory for such abelian subcategories. Our theory is based on Quillen’s notion of exact categories, in particular a theorem by Dyer which provides exact subcategories of triangulated categories. The theory of simple minded systems can be viewed as “negative cluster tilting theory”. In particular, the result that ⟨ S⟩ is an abelian subcategory is a negative counterpart to the result from (higher) positive cluster tilting theory that if T is a cluster tilting subcategory, then (T∗ Σ T) / [T] is an abelian quotient category.
AB - If k is a field, A a finite dimensional k-algebra, then the simple A-modules form a simple minded collection in the derived category Db(modA). Their extension closure is modA; in particular, it is abelian. This situation is emulated by a general simple minded collection S in a suitable triangulated category C. In particular, the extension closure ⟨ S⟩ is abelian, and there is a tilting theory for such abelian subcategories of C. These statements follow from ⟨ S⟩ being the heart of a bounded t-structure. It is a defining characteristic of simple minded collections that their negative self extensions vanish in every degree. Relaxing this to vanishing in degrees { - w+ 1 , … , - 1 } where w is a positive integer leads to the rich, parallel notion of w-simple minded systems, which have recently been the subject of vigorous interest. If S is a w-simple minded system for some w⩾ 2 , then ⟨ S⟩ is typically not the heart of a t-structure. Nevertheless, using different methods, we will prove that ⟨ S⟩ is abelian and that there is a tilting theory for such abelian subcategories. Our theory is based on Quillen’s notion of exact categories, in particular a theorem by Dyer which provides exact subcategories of triangulated categories. The theory of simple minded systems can be viewed as “negative cluster tilting theory”. In particular, the result that ⟨ S⟩ is an abelian subcategory is a negative counterpart to the result from (higher) positive cluster tilting theory that if T is a cluster tilting subcategory, then (T∗ Σ T) / [T] is an abelian quotient category.
KW - Cluster category
KW - Derived category
KW - Heart
KW - Orbit category
KW - Orthogonal collection
KW - Simple minded collection
KW - t-structure
KW - tilting
UR - http://www.scopus.com/inward/record.url?scp=85123265285&partnerID=8YFLogxK
U2 - 10.1007/s00209-021-02913-5
DO - 10.1007/s00209-021-02913-5
M3 - Journal article
AN - SCOPUS:85123265285
SN - 0025-5874
VL - 301
SP - 565
EP - 592
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
IS - 1
ER -