TY - JOUR
T1 - A Preclinical Study of Casein Glycomacropeptide as a Dietary Intervention for Acute Mania
AU - Liebenberg, Nico
AU - Jensen, Erik
AU - Larsen, Erik Roj
AU - Kousholt, Birgitte Saima
AU - Pereira, Vitor Silva
AU - Fischer, Christina Weide
AU - Wegener, Gregers
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Background: Casein glycomacropeptide is a peptide that lacks phenylalanine, tyrosine, and tryptophan. This profile may enable it to deplete phenylalanine, tyrosine, and tryptophan, and subsequently the synthesis of dopamine and serotonin in the brain. Dopamine- and serotonin-depleting amino acid mixtures have shown promise as acute antimanic treatments. In this study, we explore the depleting effects on amino acids, dopamine and serotonin as well as its actions on manic-like and other behavior in rats.Methods: Casein glycomacropeptide and a selection of amino acid mixtures were administered orally at 2, 4, or 8 h or for 1 week chronically. Amino acid and monoamine levels were measured in plasma and brain and behavior was assessed in the amphetamine-hyperlocomotion, forced swim, prepulse inhibition, and elevated plus maze tests.Results: Casein glycomacropeptide induced a time-dependent reduction in tyrosine, tryptophan, and phenylalanine in brain and plasma which was augmented by supplementing with leucine. Casein glycomacropeptide +leucine reduced dopamine in the frontal cortex and serotonin in the hippocampus, frontal cortex, and striatum after 2 and 4 h. Casein glycomacropeptide+leucine also had antimanic activity in the amphetamine-induced hyperlocomotion test at 2 h after a single acute treatment and after 1 week of chronic treatment.Conclusions: Casein glycomacropeptide-based treatments and a branched-chain amino acid mixture affected total tissue levels of dopamine in the frontal cortex and striatum and serotonin in the frontal cortex, striatum, and hippocampus of rats in a time-dependent fashion and displayed antimanic efficacy in a behavioral assay of mania.
AB - Background: Casein glycomacropeptide is a peptide that lacks phenylalanine, tyrosine, and tryptophan. This profile may enable it to deplete phenylalanine, tyrosine, and tryptophan, and subsequently the synthesis of dopamine and serotonin in the brain. Dopamine- and serotonin-depleting amino acid mixtures have shown promise as acute antimanic treatments. In this study, we explore the depleting effects on amino acids, dopamine and serotonin as well as its actions on manic-like and other behavior in rats.Methods: Casein glycomacropeptide and a selection of amino acid mixtures were administered orally at 2, 4, or 8 h or for 1 week chronically. Amino acid and monoamine levels were measured in plasma and brain and behavior was assessed in the amphetamine-hyperlocomotion, forced swim, prepulse inhibition, and elevated plus maze tests.Results: Casein glycomacropeptide induced a time-dependent reduction in tyrosine, tryptophan, and phenylalanine in brain and plasma which was augmented by supplementing with leucine. Casein glycomacropeptide +leucine reduced dopamine in the frontal cortex and serotonin in the hippocampus, frontal cortex, and striatum after 2 and 4 h. Casein glycomacropeptide+leucine also had antimanic activity in the amphetamine-induced hyperlocomotion test at 2 h after a single acute treatment and after 1 week of chronic treatment.Conclusions: Casein glycomacropeptide-based treatments and a branched-chain amino acid mixture affected total tissue levels of dopamine in the frontal cortex and striatum and serotonin in the frontal cortex, striatum, and hippocampus of rats in a time-dependent fashion and displayed antimanic efficacy in a behavioral assay of mania.
U2 - 10.1093/ijnp/pyy012
DO - 10.1093/ijnp/pyy012
M3 - Journal article
C2 - 29726996
SN - 1461-1457
VL - 21
SP - 473
EP - 484
JO - International Journal of Neuropsychopharmacology
JF - International Journal of Neuropsychopharmacology
IS - 5
ER -