Abstract
The dual-stage reactor is a novel continuous flow reactor with two reactors connected in series. It is designed for hydrothermal flow synthesis of nanocomposites, in which a single particle consists of multiple materials. The secondary material may protect the core nanoparticle from oxidation and agglomeration, enhance catalytic or optical properties or combine properties into a multifunctional material. Such hybrids form the frontier of materials science, but the methods that provide strong synthesis control typically only yields minute quantitites which prohibits any real application of the materials.
The dual-stage reactor combines the ability to produce advanced materials with an upscaled capacity in excess of 10 g/hour (dry mass). TiO2 was synthesized in the primary reactor and reproduced previous results. The dual-stage capability was succesfully demonstrated with a series of nanocomposites incl. TiO2@SnO2, TiO2@SiO2 and Fe2O3@SiO2.
The dual-stage reactor combines the ability to produce advanced materials with an upscaled capacity in excess of 10 g/hour (dry mass). TiO2 was synthesized in the primary reactor and reproduced previous results. The dual-stage capability was succesfully demonstrated with a series of nanocomposites incl. TiO2@SnO2, TiO2@SiO2 and Fe2O3@SiO2.
Original language | English |
---|---|
Publication date | 2015 |
Number of pages | 1 |
Publication status | Published - 2015 |