Abstract
It is common for long financial time series to exhibit gradual change in the unconditional volatility. We propose a new model that captures this type of nonstationarity in a parsimonious way. The model augments the volatility equation of a standard GARCH model by a deterministic time-varying intercept. It captures structural change that slowly affects the amplitude of a time series while keeping the short-run dynamics constant. We parameterize the intercept as a linear combination of logistic transition functions. We show that the model can be derived from a multiplicative decomposition of volatility and preserves the financial motivation of variance decomposition. We use the theory of locally stationary processes to show that the quasi maximum likelihood estimator (QMLE) of the parameters of the model is consistent and asymptotically normally distributed. We examine the quality of the
asymptotic approximation in a small simulation study. An empirical application to Oracle Corporation stock returns demonstrates the usefulness of the model. We find that the persistence implied by the GARCH parameter estimates is reduced by including a time-varying intercept in the volatility equation.
asymptotic approximation in a small simulation study. An empirical application to Oracle Corporation stock returns demonstrates the usefulness of the model. We find that the persistence implied by the GARCH parameter estimates is reduced by including a time-varying intercept in the volatility equation.
Original language | English |
---|---|
Number of pages | 52 |
Publication status | Published - 7 Oct 2024 |