A Modified Chronic Infection Model for Testing Treatment of Staphylococcus aureus Biofilms on Implants

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Bacterial biofilms causing implant-associated osteomyelitis is a severe complication with limited antimicrobial therapy options. We designed an animal model, in which implant associated osteomyelitis arise from a Staphylococcus aureus biofilm on a tibia implant. Two bioluminescently engineered (luxA-E transformed), strains of S. aureus were utilized, Xen29 and Xen31. Biofilm formation was assessed with epifluorescence microscopy. Quantitative measurements were performed day 4, 6, 8, 11 and 15 post-surgery. Bacteria were extracted from the biofilm by sonication and the bacterial load quantified by culturing. Biofilm formation was evident from day 6 post-implantation. Mean bacterial load from implants was ∼1×104 CFU/implant, while mean bacterial load from infected tibias were 1×106 CFU/bone. Bioluminesence imaging revealed decreasing activity throughout the 15-day observation period, with signal intensity for both strains reaching that of the negative control by day 15 while there was no significant reduction in bacterial load. The model is suitable for testing antimicrobial treatment options for implant associated OM, as treatment efficacy on both biofilm and viable counts can be assessed.

Original languageEnglish
Pages (from-to)e103688
Publication statusPublished - 2014

See relations at Aarhus University Citationformats

ID: 81994485