Aarhus University Seal

A Lactobacilli diet that confers MRSA resistance causes amino acid depletion and increased antioxidant levels in the C. elegans host

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Probiotic bacteria are increasingly popular as dietary supplements and have the potential as alternatives to traditional antibiotics. We have recently shown that pretreatment with Lactobacillus spp. Lb21 increases the life span of C. elegans and results in resistance toward pathogenic methicillin-resistant Staphylococcus aureus (MRSA). The Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-β signaling pathway. However, the underlying changes at the metabolite level are not understood which limits the application of probiotic bacteria as timely alternatives to traditional antibiotics. In this study, we have performed untargeted nuclear magnetic resonance-based metabolic profiling. We report the metabolomes of Lactobacillus spp. Lb21 and control E. coli OP50 bacteria as well as the nematode-host metabolomes after feeding with these diets. We identify 48 metabolites in the bacteria samples and 51 metabolites in the nematode samples and 63 across all samples. Compared to the control diet, the Lactobacilli pretreatment significantly alters the metabolic profile of the worms. Through sparse Partial Least Squares discriminant analyses, we identify the 20 most important metabolites distinguishing probiotics from the regular OP50 food and worms fed the two different bacterial diets, respectively. Among the changed metabolites, we find lower levels of essential amino acids as well as increased levels of the antioxidants, ascorbate, and glutathione. Since the probiotic diet offers significant protection against MRSA, these metabolites could provide novel ways of combatting MRSA infections.

Original languageEnglish
Article number886206
JournalFrontiers in Microbiology
Volume13
Number of pages15
ISSN1664-302X
DOIs
Publication statusPublished - Jul 2022

Bibliographical note

Copyright © 2022 Møller, Nguyen, Mørch, Hesselager, Mulder, Fuursted and Olsen.

    Research areas

  • Caenorhabditis elegans, Lactobacillus, MRSA, NMR, amino acids, metabolomics, probiotic bacteria

See relations at Aarhus University Citationformats

ID: 277441488