TY - JOUR
T1 - A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao cross-coupling reactions in water
AU - Sobhani, Sara
AU - Hosseini Moghadam, Hadis
AU - Skibsted, Jørgen
AU - Sansano, José Miguel
PY - 2020
Y1 - 2020
N2 - A hydrophilic heterogeneous cobalt catalyst of chitosan, denoted as mTEG-CS-Co-Schiff-base, has been successfully prepared. This newly synthesized catalyst was characterized by different methods such as XRD, FE-SEM, TEM, TGA, FT-IR, 13C{1H} CP/MAS NMR, XPS and ICP analyses. The catalyst displayed excellent activity for the palladium and fluoride-free Hiyama, Suzuki, Heck and Hirao reactions of various aryl iodides, bromides and chlorides (i.e., the most challenging aryl halides which are cheaper and more widely available than aryl iodides and bromides) in water. The presence of triethylene glycol tags with hydrophilic character on the Co-complex supported on chitosan provides dispersion of the catalyst particles in water, which leads to higher catalytic performance and also facile catalyst recovery by successive extraction. It was reused for at least six successive runs without any discernible decrease in its catalytic activity or any remarkable changes in catalyst structure. The use of water as a green solvent, without requiring any additive or organic solvent, as well as use of a low cost and abundant cobalt catalyst instead of expensive Pd catalysts along with the catalyst recovery and scalability, make this method favorable from environmental and economic points of view for the C-C and C(sp2)-P coupling reactions. Notably, this is the first report on the application of a cobalt catalyst in Hiyama reactions.
AB - A hydrophilic heterogeneous cobalt catalyst of chitosan, denoted as mTEG-CS-Co-Schiff-base, has been successfully prepared. This newly synthesized catalyst was characterized by different methods such as XRD, FE-SEM, TEM, TGA, FT-IR, 13C{1H} CP/MAS NMR, XPS and ICP analyses. The catalyst displayed excellent activity for the palladium and fluoride-free Hiyama, Suzuki, Heck and Hirao reactions of various aryl iodides, bromides and chlorides (i.e., the most challenging aryl halides which are cheaper and more widely available than aryl iodides and bromides) in water. The presence of triethylene glycol tags with hydrophilic character on the Co-complex supported on chitosan provides dispersion of the catalyst particles in water, which leads to higher catalytic performance and also facile catalyst recovery by successive extraction. It was reused for at least six successive runs without any discernible decrease in its catalytic activity or any remarkable changes in catalyst structure. The use of water as a green solvent, without requiring any additive or organic solvent, as well as use of a low cost and abundant cobalt catalyst instead of expensive Pd catalysts along with the catalyst recovery and scalability, make this method favorable from environmental and economic points of view for the C-C and C(sp2)-P coupling reactions. Notably, this is the first report on the application of a cobalt catalyst in Hiyama reactions.
UR - http://www.scopus.com/inward/record.url?scp=85080918731&partnerID=8YFLogxK
U2 - 10.1039/c9gc03455b
DO - 10.1039/c9gc03455b
M3 - Journal article
AN - SCOPUS:85080918731
SN - 1463-9262
VL - 22
SP - 1353
EP - 1365
JO - Green Chemistry
JF - Green Chemistry
IS - 4
ER -