Abstract
Animal germline development and fertility rely on paralogs of general transcription factors that recruit RNA polymerase II to ensure cell type-specific gene expression. It remains unclear whether gene expression processes downstream from such paralog-based transcription is distinct from that of canonical RNA polymerase II genes. In Drosophila, the testis-specific TBP-associated factors (tTAFs) activate over a thousand spermatocyte-specific gene promoters to enable meiosis and germ cell differentiation. Here, we show that efficient termination of tTAF-activated transcription relies on testis-specific paralogs of canonical polymerase-associated factor 1 complex (PAF1C) proteins, which form a testis-specific PAF1C (tPAF). Consequently, tPAF mutants show aberrant expression of hundreds of downstream genes due to read-in transcription. Furthermore, tPAF facilitates expression of Y-linked male fertility factor genes and thus serves to maintain spermatocyte-specific gene expression. Consistently, tPAF is required for the segregation of meiotic chromosomes and male fertility. Supported by comparative in vivo protein interaction assays, we provide a mechanistic model for the functional divergence of tPAF and the PAF1C and identify transcription termination as a developmentally regulated process required for germline-specific gene expression.
Original language | English |
---|---|
Journal | Genes & Development |
Volume | 38 |
Issue | 17-20 |
Pages (from-to) | 866-886 |
Number of pages | 21 |
ISSN | 0890-9369 |
DOIs | |
Publication status | Published - 16 Oct 2024 |
Keywords
- cell type identity
- germline
- PAF1 complex
- paralogs
- transcription termination