Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
}
TY - JOUR
T1 - Aβ dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies
AU - O'Malley, Tiernan T
AU - Oktaviani, Nur Alia
AU - Zhang, Dainan
AU - Lomakin, Aleksey
AU - O'Nuallain, Brian
AU - Linse, Sara
AU - Benedek, George B.
AU - Rowan, Michael J.
AU - Mulder, Frans A.A.
AU - Walsh, Dominic M.
PY - 2014
Y1 - 2014
N2 - Dimers of the amyloid β-protein (Aβ) are believed to play an important role in Alzheimer's disease. In the absence of sufficient brain-derived dimer we studied one of the only possible dimers that could be produced in vivo, dityrosine cross-linked Aβ, [Aβ]DiY. For comparison we used Aβ monomer and a design dimer cross-linked by substitution of serine 26 with cystine, [AβS26C]2. We show that like monomer, unaggregated dimers, lack appreciable structure and fail to alter LTP. Importantly, dimers exhibit subtly different structural propensities from monomer and each other, and can self-associate to form larger assemblies. Although [Aβ]DiY and [AβS26C]2 have distinct aggregation pathways they both populate bioactive soluble assemblies for longer durations than Aβ monomer. Our results indicate that the link between Aβ dimers and Alzheimer's disease results from the ability of dimers to further assemble and form synaptotoxic assemblies that persist for long periods of time.
AB - Dimers of the amyloid β-protein (Aβ) are believed to play an important role in Alzheimer's disease. In the absence of sufficient brain-derived dimer we studied one of the only possible dimers that could be produced in vivo, dityrosine cross-linked Aβ, [Aβ]DiY. For comparison we used Aβ monomer and a design dimer cross-linked by substitution of serine 26 with cystine, [AβS26C]2. We show that like monomer, unaggregated dimers, lack appreciable structure and fail to alter LTP. Importantly, dimers exhibit subtly different structural propensities from monomer and each other, and can self-associate to form larger assemblies. Although [Aβ]DiY and [AβS26C]2 have distinct aggregation pathways they both populate bioactive soluble assemblies for longer durations than Aβ monomer. Our results indicate that the link between Aβ dimers and Alzheimer's disease results from the ability of dimers to further assemble and form synaptotoxic assemblies that persist for long periods of time.
U2 - 10.1042/BJ20140219
DO - 10.1042/BJ20140219
M3 - Journal article
C2 - 24785004
VL - 461
SP - 413
EP - 426
JO - Biochemical Journal
JF - Biochemical Journal
SN - 0264-6021
IS - 3
ER -