[8+2] vs [4+2] Cycloadditions of Cyclohexadienamines to Tropone and Heptafulvenes—Mechanisms and Selectivities

Xiangyang Chen, Mathias Kirk Thøgersen, Limin Yang, Rune F. Lauridsen, Xiao Song Xue, Karl Anker Jørgensen*, K. N. Houk*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

The cinchona-alkaloid-catalyzed cycloaddition reactions of 2-cyclohexenone with tropone and various heptafulvenes give [8+2] or [4+2] cycloadducts, depending on the substituents present on the heptafulvene. We report the results of new experiments with heptafulvenes, containing diester and barbiturate substituents, which in combination with computational studies were performed to elucidate the factors controlling [8+2] vs [4+2] cycloaddition pathways, including chemo-, regio-, and stereoselectivities of these higher-order cycloadditions. The protonated cinchona alkaloid primary amine catalyst reacts with 2-cyclohexenone to form a linear dienamine intermediate that subsequently undergoes a stepwise [8+2] or [4+2] cycloaddition. Both tropone and the different heptafulvenes initially form [8+2] cycloadducts. The final product is ultimately decided by the reversibility of the [8+2] cycloaddition and the relative thermal stability of the [4+2] products. The stereoisomeric transition states are distinguished by the steric interactions between the protonated catalyst and tropone/heptafulvenes. The [8+2] cycloaddition of barbiturate-heptafulvene afforded products with an unprecedented trans-fusion of the five- and six-membered rings, while the [8+2] cycloadducts obtained from cyanoester-heptafulvene and diester-heptafulvene were formed with a cis-relationship. The mechanism, thermodynamics, and origins of stereoselectivity were explained through DFT calculations using the ωB97X-D density functional.

Original languageEnglish
JournalJournal of the American Chemical Society
Volume143
Issue2
Pages (from-to)934-944
Number of pages11
ISSN0002-7863
DOIs
Publication statusPublished - Jan 2021

Fingerprint

Dive into the research topics of '[8+2] vs [4+2] Cycloadditions of Cyclohexadienamines to Tropone and Heptafulvenes—Mechanisms and Selectivities'. Together they form a unique fingerprint.

Cite this