2D SnSe/Si heterojunction for self-driven broadband photodetectors

Lanzhong Hao, Zegao Wang, Hanyang Xu, Keyou Yan, Shichang Dong, Hui Liu, Yongjun Du, Yupeng Wu, Yunjie Liu, Mingdong Dong

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review


Van der Waals heterojunctions based on atomically thin 2D materials have opened up new realms in modern semiconductor industry. However, it is still challenging to fabricate large-area ultrathin 2D films. Herein, we successfully fabricate wafer-size 2D SnSe films on Si substrate by magnetron sputtering technique, enabling the formation of SnSe/Si van der Waals (vdWs) heterojunction device. The high-resolution transmission electron microscopy is employed to character the structure of SnSe film and SnSe/Si heterojunction with ideal orthorhombic structure and atomically abrupt interface, respectively. The energy diagram of SnSe/Si heterojunction is constructed, exhibiting similar barrier heights for electron and hole carrier. The SnSe/Si heterojunction shows obvious diode behavior with rectification ratio of ∼1.6 ×10 4 , forward current of ∼194.5 mA cm -2 at ±1.0 V. Furthermore, owing to the high crystalline orientation, specific energy-band alignment, as well as the strong built-in electrical field, the SnSe/Si heterojunction illustrates a broadband photodetecting properties with the wavelength ranging from ultraviolet to near-infrared light, showing a high detectivity of 4.4 ×10 12 cmHz 1/2 W -1 , a high responsivity of 566.4 mA mW -1 and an ultrafast response/recovery time of ∼1.6/47.7 s under zero external bias. This work provides a new strategy for fabrication of low cost 2D optoelectronic devices with high-performance.

Original languageEnglish
Article number034004
Journal2D materials
Publication statusPublished - May 2019


  • broadband
  • heterojunction
  • photodetector
  • self-driven
  • tin monoselenide


Dive into the research topics of '2D SnSe/Si heterojunction for self-driven broadband photodetectors'. Together they form a unique fingerprint.

Cite this