α-Synuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology

Josefine R Christiansen, Mads N Olesen, Daniel E Otzen, Marina Romero-Ramos, Vanesa Sanchez-Guajardo

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

BACKGROUND: Passive and active immunization with α-synuclein has been shown to be neuroprotective in animal models of Parkinson's disease. We have previously shown that vaccination with α-synuclein, long before α-synuclein-induced brain pathology, prevents striatal degeneration by inducing regulatory T cell infiltration in parenchyma and antibody deposition on α-synuclein overexpressing neurons. However, the effect of peripheral α-synuclein on the immune system is unknown, as are the mechanistic changes induced in the CD4 T cell population during successful neuroprotective animal studies. We have studied the changes induced by vaccination with α-synuclein in the CD4 T cell pool and its impact on brain microglia to understand the immune mechanisms behind successful vaccination strategies in Parkinson's disease animal models.

METHODS: Mice were immunized with WT or nitrated α-synuclein at a dose equivalent to the one used in our previous successful vaccination strategy and at a higher dose to determine potential dose-dependent effects. Animals were re-vaccinated 4 weeks after and sacrificed 5 days later. These studies were conducted in naive animals in the absence of human α-synuclein expression.

RESULTS: The CD4 T cell response was modulated by α-synuclein in a dose-dependent manner, in particular the regulatory T cell population. Low-dose α-synuclein induced expansion of naive (Foxp3 + CCR6-CD127lo/neg) and dopamine receptor type D3+ regulatory T cells, as well as an increase in Stat5 protein levels. On the other hand, high dose promoted activation of regulatory T cells (Foxp3CCR6 + CD127lo/neg), which were dopamine receptor D2+D3-, and induced up-regulation of Stat5 and production of anti-α-synuclein antibodies. These effects were specific to the variant of α-synuclein used as the pathology-associated nitrated form induced distinct effects at both doses. The changes observed in the periphery after vaccination with low-dose α-synuclein correlated with an increase in CD154+, CD103+, and CD54+ microglia and the reduction of CD200R+ microglia. This resulted in the induction of a polarized tolerogenic microglia population that was CD200R-CD54CD103CD172a+ (82 % of total microglia).

CONCLUSIONS: We have shown for the first time the mechanisms behind α-synuclein vaccination and, importantly, how we can modulate microglia's phenotype by regulating the CD4 T cell pool, thus shedding invaluable light on the design of neuroimmunoregulatory therapies for Parkinson's disease.

Original languageEnglish
Article number74
JournalJournal of Neuroinflammation
Volume13
Issue1
ISSN1742-2094
DOIs
Publication statusPublished - 9 Apr 2016

Keywords

  • CCR6
  • CD103
  • Dopamine receptor D2 (DR-D2)
  • Dopamine receptor D3 (DR-D3)
  • Foxp3
  • Immunotherapy
  • Neuroinflammation
  • Parkinson's disease
  • Stat5

Fingerprint

Dive into the research topics of 'α-Synuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology'. Together they form a unique fingerprint.

Cite this