Tommy Dalgaard

Buffers for biomass production in temperate European agriculture: A review and synthesis on function, ecosystem services and implementation

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Buffer strips on agricultural land have been shown to protect surface water quality by reducing erosion and diffuse pollution. They can also play a key role in nature conservation and flood risk mitigation as well as in the design of bioenergy landscapes resilient to changes in climate, environmental pressures from intensive agriculture and policy developments. Use of conservation buffers by farmers outside of designated schemes is limited to date, but the increasing demand for bioenergy and the combination of agricultural production with conservation calls for a much wider implementation.
This paper reviews the biophysical knowledge on buffer functioning and associated ecosystem services. It describes how a three-zone buffer design, with arable fields buffered in combination by grassland, short rotation forestry (SRF) or coppice (SRC) and undisturbed vegetation along water courses, can be incorporated into farming landscapes as productive conservation elements and reflects on the potential for successful implementation.
Land use plays a much greater role in determining catchment hydrology than soil type: shelterbelts or buffer strips have markedly higher infiltration capacity than arable or pasture land. Root architecture of trees, shrubs and herbaceous plants differs between species and is important for the extent of hydrological changes after establishment. Riparian buffers retain 30-99% of nitrate N and 20-100% of phosphorous from runoff and shallow groundwater. Buffers are also highly effective for pesticide removal and farmland biodiversity conservation with a high
potential for low-input fuel, feed, or fibre production. Landscape amenities, sporting opportunities, and a display of land stewardship are additional benefits.
Original languageEnglish
JournalBiomass & Bioenergy
Pages (from-to)53-67
Publication statusPublished - 2013

    Research areas

  • riparian buffer, short rotation coppice, short rotation forestry, farm management, farmers' decision making, diffuse pollution

See relations at Aarhus University Citationformats


  • Plantekongres 2012

    Activity: Participating in or organising an event typesParticipation in or organisation af a conference

ID: 44153289