Aarhus University Seal

Steen Vang Petersen

Transglutaminase 2-Catalyzed Intramolecular Cross-Linking of Osteopontin

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Osteopontin (OPN) is a multifunctional integrin-binding protein present in several tissues and body fluids. OPN is a substrate for the enzyme transglutaminase 2 (TG2), which catalyzes inter- and intramolecular cross-linking affecting the biological activity of the protein. Polymerization of OPN by intermolecular cross-linking has mostly been studied using relatively high TG2 concentrations, whereas the effect of lower concentrations of TG2 has remained unexplored. Here we show that TG2 at physiologically relevant concentrations predominantly catalyzes the formation of intramolecular cross-links in OPN. By site-directed mutagenesis and mass spectrometry, we demonstrate that Gln(42) and Gln(193) serve as the primary amine acceptor sites for isopeptide bond formation. We find that Gln(42) predominantly is linked to Lys(4) and that Gln(193) participates in a cross-link with Lys(154), Lys(157), or Lys(231). The formation of specific isopeptide bonds was not dependent on OPN phosphorylation, and similar patterns of cross-linking were observed in human and mouse OPN. Furthermore, we find that OPN purified from human urine contains the Lys(154)-Gln(193) isopeptide bond, indicating that intramolecular cross-linking of OPN occurs in vivo. Collectively, these data suggest that specific intramolecular cross-linking in the N- and C-terminal parts of OPN is most likely the dominant step in TG2-catalyzed modification of OPN.

Original languageEnglish
JournalBiochemistry
Volume55
Issue2
Pages (from-to)294-303
Number of pages10
ISSN0006-2960
DOIs
Publication statusPublished - 19 Jan 2016

See relations at Aarhus University Citationformats

ID: 96328649