Aarhus University Seal / Aarhus Universitets segl

Sergey Arkhipov

Quasi-coherent Hecke category and Demazure descent

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

Quasi-coherent Hecke category and Demazure descent. / Arkhipov, Sergey; Kanstrup, Tina.

In: Moscow Mathematical Journal, Vol. 15, No. 2, 2015, p. 257-267.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

Arkhipov, S & Kanstrup, T 2015, 'Quasi-coherent Hecke category and Demazure descent', Moscow Mathematical Journal, vol. 15, no. 2, pp. 257-267. <http://www.mathjournals.org/mmj/2015-015-002/2015-015-002-004.html>

APA

CBE

Arkhipov S, Kanstrup T. 2015. Quasi-coherent Hecke category and Demazure descent. Moscow Mathematical Journal. 15(2):257-267.

MLA

Arkhipov, Sergey and Tina Kanstrup. "Quasi-coherent Hecke category and Demazure descent". Moscow Mathematical Journal. 2015, 15(2). 257-267.

Vancouver

Arkhipov S, Kanstrup T. Quasi-coherent Hecke category and Demazure descent. Moscow Mathematical Journal. 2015;15(2):257-267.

Author

Arkhipov, Sergey ; Kanstrup, Tina. / Quasi-coherent Hecke category and Demazure descent. In: Moscow Mathematical Journal. 2015 ; Vol. 15, No. 2. pp. 257-267.

Bibtex

@article{3e5018e9702e4534a20a28a2005fbcca,
title = "Quasi-coherent Hecke category and Demazure descent",
abstract = "Let G be a reductive algebraic group with a Borel subgroup B. We define the quasi-coherent Hecke category for the pair (G,B). For any regular Noetherian G- scheme X we construct a monoidal action of the Hecke category on the derived category of B-equivariant quasi-coherent sheaves on X. Using the action we define the Demazure Descent Data on the latter category and prove that the Descent category is equivalent to the derived category of G-equivariant sheaves on X.",
author = "Sergey Arkhipov and Tina Kanstrup",
year = "2015",
language = "English",
volume = "15",
pages = "257--267",
journal = "Moscow Mathematical Journal",
issn = "1609-3321",
publisher = "Nezavisimyi Moskovskii Universitet",
number = "2",

}

RIS

TY - JOUR

T1 - Quasi-coherent Hecke category and Demazure descent

AU - Arkhipov, Sergey

AU - Kanstrup, Tina

PY - 2015

Y1 - 2015

N2 - Let G be a reductive algebraic group with a Borel subgroup B. We define the quasi-coherent Hecke category for the pair (G,B). For any regular Noetherian G- scheme X we construct a monoidal action of the Hecke category on the derived category of B-equivariant quasi-coherent sheaves on X. Using the action we define the Demazure Descent Data on the latter category and prove that the Descent category is equivalent to the derived category of G-equivariant sheaves on X.

AB - Let G be a reductive algebraic group with a Borel subgroup B. We define the quasi-coherent Hecke category for the pair (G,B). For any regular Noetherian G- scheme X we construct a monoidal action of the Hecke category on the derived category of B-equivariant quasi-coherent sheaves on X. Using the action we define the Demazure Descent Data on the latter category and prove that the Descent category is equivalent to the derived category of G-equivariant sheaves on X.

M3 - Journal article

VL - 15

SP - 257

EP - 267

JO - Moscow Mathematical Journal

JF - Moscow Mathematical Journal

SN - 1609-3321

IS - 2

ER -