Department of Biology

Aarhus University Seal / Aarhus Universitets segl

Professor Peter Teglberg Madsen

High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother-calf energy transfer

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother-calf energy transfer. / Videsen, Simone K. A.; Bejder, Lars; Johnson, Mark; Madsen, Peter T.

In: Functional Ecology, Vol. 31, No. 8, 08.2017, p. 1561-1573.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{94d78a1d6f8644fda3ff7f80af8a3cf8,
title = "High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother-calf energy transfer",
abstract = "1. The migration of humpback whales to and from their breeding grounds results in a short, critical time period during which neonatal calves must acquire sufficient energy via suckling from their fasting mothers to survive the long return journey.2. Understanding neonate suckling behaviour is critical for understanding the energetics and evolution of humpback whale migratory behaviour and for informing conservation efforts, but despite its importance, very little is known about the details, rate and behavioural context of this critical energy transfer.3. To address this pertinent data gap on calf suckling behaviour, we deployed multi-sensor Dtags on eight humpback whale calves and two mothers allowing us to analyse detailed suckling and acoustic behaviour for a total of 68.8 h.4. Suckling dives were performed 20.7 +/- 7% of the total tagging time with the mothers either resting at the surface or at depth with the calves hanging motionless with roll and pitch angles close to zero.5. Vocalisations between mother and calf, which included very weak tonal and grunting sounds, were produced more frequently during active dives than suckling dives, suggesting that mechanical stimuli rather than acoustic cues are used to initiate nursing.6. Use of mechanical cues for initiating suckling and low level vocalisations with an active space of7. Such inconspicuous behaviour likely reduces the risk of exposure to eavesdropping predators and male humpback whale escorts that may disrupt the high proportion of time spent nursing and resting, and hence ultimately compromise calf fitness.8. The small active space of the weak calls between mother and calf is very sensitive to increases in ambient noise from human encroachment thereby increasing the risk of mothercalf separation.",
keywords = "bio-energetics, humpback whale, migration, neonate, nursing, suckling, MEGAPTERA-NOVAEANGLIAE CALVES, DOLPHIN TURSIOPS-TRUNCATUS, HAWAIIAN WATERS, SOCIAL SOUNDS, BEHAVIOR, MILK, SONG, VOCALIZATIONS, COMMUNICATION, ENERGETICS",
author = "Videsen, {Simone K. A.} and Lars Bejder and Mark Johnson and Madsen, {Peter T.}",
year = "2017",
month = aug,
doi = "10.1111/1365-2435.12871",
language = "English",
volume = "31",
pages = "1561--1573",
journal = "Functional Ecology",
issn = "0269-8463",
publisher = "Wiley-Blackwell Publishing Ltd.",
number = "8",

}

RIS

TY - JOUR

T1 - High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother-calf energy transfer

AU - Videsen, Simone K. A.

AU - Bejder, Lars

AU - Johnson, Mark

AU - Madsen, Peter T.

PY - 2017/8

Y1 - 2017/8

N2 - 1. The migration of humpback whales to and from their breeding grounds results in a short, critical time period during which neonatal calves must acquire sufficient energy via suckling from their fasting mothers to survive the long return journey.2. Understanding neonate suckling behaviour is critical for understanding the energetics and evolution of humpback whale migratory behaviour and for informing conservation efforts, but despite its importance, very little is known about the details, rate and behavioural context of this critical energy transfer.3. To address this pertinent data gap on calf suckling behaviour, we deployed multi-sensor Dtags on eight humpback whale calves and two mothers allowing us to analyse detailed suckling and acoustic behaviour for a total of 68.8 h.4. Suckling dives were performed 20.7 +/- 7% of the total tagging time with the mothers either resting at the surface or at depth with the calves hanging motionless with roll and pitch angles close to zero.5. Vocalisations between mother and calf, which included very weak tonal and grunting sounds, were produced more frequently during active dives than suckling dives, suggesting that mechanical stimuli rather than acoustic cues are used to initiate nursing.6. Use of mechanical cues for initiating suckling and low level vocalisations with an active space of7. Such inconspicuous behaviour likely reduces the risk of exposure to eavesdropping predators and male humpback whale escorts that may disrupt the high proportion of time spent nursing and resting, and hence ultimately compromise calf fitness.8. The small active space of the weak calls between mother and calf is very sensitive to increases in ambient noise from human encroachment thereby increasing the risk of mothercalf separation.

AB - 1. The migration of humpback whales to and from their breeding grounds results in a short, critical time period during which neonatal calves must acquire sufficient energy via suckling from their fasting mothers to survive the long return journey.2. Understanding neonate suckling behaviour is critical for understanding the energetics and evolution of humpback whale migratory behaviour and for informing conservation efforts, but despite its importance, very little is known about the details, rate and behavioural context of this critical energy transfer.3. To address this pertinent data gap on calf suckling behaviour, we deployed multi-sensor Dtags on eight humpback whale calves and two mothers allowing us to analyse detailed suckling and acoustic behaviour for a total of 68.8 h.4. Suckling dives were performed 20.7 +/- 7% of the total tagging time with the mothers either resting at the surface or at depth with the calves hanging motionless with roll and pitch angles close to zero.5. Vocalisations between mother and calf, which included very weak tonal and grunting sounds, were produced more frequently during active dives than suckling dives, suggesting that mechanical stimuli rather than acoustic cues are used to initiate nursing.6. Use of mechanical cues for initiating suckling and low level vocalisations with an active space of7. Such inconspicuous behaviour likely reduces the risk of exposure to eavesdropping predators and male humpback whale escorts that may disrupt the high proportion of time spent nursing and resting, and hence ultimately compromise calf fitness.8. The small active space of the weak calls between mother and calf is very sensitive to increases in ambient noise from human encroachment thereby increasing the risk of mothercalf separation.

KW - bio-energetics

KW - humpback whale

KW - migration

KW - neonate

KW - nursing

KW - suckling

KW - MEGAPTERA-NOVAEANGLIAE CALVES

KW - DOLPHIN TURSIOPS-TRUNCATUS

KW - HAWAIIAN WATERS

KW - SOCIAL SOUNDS

KW - BEHAVIOR

KW - MILK

KW - SONG

KW - VOCALIZATIONS

KW - COMMUNICATION

KW - ENERGETICS

U2 - 10.1111/1365-2435.12871

DO - 10.1111/1365-2435.12871

M3 - Journal article

VL - 31

SP - 1561

EP - 1573

JO - Functional Ecology

JF - Functional Ecology

SN - 0269-8463

IS - 8

ER -